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EXCITATION OF ACOUSTIC MODES IN FILM BOILING

B. M. Dorofeev UDC 536.423.1:534.142

A photomultiplier hag been used [1, 2] in a direct optical method of examining the fluctuations in the
size of the vapor cavity around a heater; the output signals from the photomultiplier and hydrophone pass to a
double-beam oscilloscope. The behavior of the vapor bubbles has also been examined by high-speed photog-
raphy, with the film recording the waves. The data have been examined indetailfor various resonance effects.
Phase relationships between the oscillations and the acoustic signals imply that a cavity performs forced periodic
pulsations under alternating sound pressure. The films and the phase shift between the oscillations and the
acoustic pressure indicate that the periodic component in the noise is produced by the bubbles before detach~
ment from the vapor cavity (see Fig. 1) and also when bubbles in the cavity fuse.

The volume fluctuations occur in these bubbles as follows., Film boiling produces large bubbles that
are surrounded on all sides apart from the wire by cold liquid (t; < tya¢); the rate v_ of vapor condensation
in a bubble is governed by the surface area, so the rate increases with the size. If the rate v+ of entry of
vapor into the bubble from the cavity is greater than v., the bubble grows, but v tends to fall rapidly imme~
diately before the bubble becomes detached on account of the narrowing of the connecting neck. When v_ and
v, become equal, the bubble still continues to grow for a short period on account of the inertia, and thus the
bubble is not thermally in equilibrium (v+ < v.) when it attains its maximal size nor is it mechanically in
equilibrium (the vapor pressure pp in the bubble is less than the pressure in the liquid p,,). Bubbles of maxi~
mum size are also not in equilibrium in bubble boiling, as has been found by direct experiment [3]. The re-
sult is that the bubble contracts, which draws the liquid in, and the liquid continues to move under its inertia
and compress the bubble until v_ and v+ become equal again. Therefore, the bubble at its minimum volume
is also not in equilibrium (v > v_, DPph > P}, S0 it begins to grow again. The bubble thus shows volume fluc-
tuations due to the nonequilibrium thermal processes (vy # v.-) and the motion of the liquid under inertia,
Several complete oscillation cycles can occur before the bubble becomes detached from the vapor cavity, and
these produce a quasiperiodic pressure pulse of the corresponding length.

Fig. 1. Vapor bubble exciting a quasi-
§ periodic sound pulse before detachment
from the cavity. Investigated liquid —
ethanol of core temperature 23 £0.5°C;
heater — a tungsten wire of length 25mm
and diameter 0.5 mm. Heat flux is 245 =
10 W/em?. The sound marks (on the per-
forated film track) indicate the compres-
sion phase in the acoustic oscillations.
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STOCHASTIC MODEL OF CONTACT CONDUCTION IN
A FILLED POLYMER WITH LOOSE PARTICLE PACKING

V. 8. Novopavlovskii UDC 536.212

There are numerous engineering applications of polymers filled with powders, in which the marked
difference in conductivity in the components means that the contacts between the filler particles play a large
part in the conduction. If the particles are very closely packed, which corresponds to a volume content Prmax’
all the particles are in contact, and the generalized conductivity of such a structure oy 3x may be calculated
from published formulas. The present study presents a method of defining the relative conductivity o/omgx
in terms of the relative content p/pmax for loose packing, and it incorporates the random mode of contact
between particles.

A structural model is proposed that allows one to calculate the mean number of contacts between parti-
cles; the particles are assumed to have a random distribution within a layer perpendicular to the flux and also
it is assumed that there are contacts between particles in one layer (fransverse contacts) and between adjacent
layers (longitudinal contacts). The formulas for the number of contacts contain two geometrical parameters
whose values may be defined approximately from theoretical calculation and then corrected by measurement
of the electrical conductivity, e.g., for a plastic impregnated with graphite. The contact conductivity of a
specimen having a relative length s in the conduction direction (the length scale is the mean particle size) is
defined by the sum of the conductivities of the continuous contact chains between the boundary surfaces.

Figure 1 shows computer calculations, where the dashed line represents the curve given by Dul'nev's
formula for a structure with interpenetrating components, which envisages that the material contains a contin-
uous framework of contacting particles.

G/ omux
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Fig. 1. Relative contact conductivity
e 5 as a function of proportion of filler
and specimen length.
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OBSERVED TEMPERATURE DEPENDENCE OF
THERMOPHYSICAL CHARACTERISTICS FOR
LAYERED VACUUM INSULATION

N. P. Pershin, R. 8., Mikhal'chenko, UDC 536.21
and E. I. Shchirov . '

Layered evacuated insulation is widely used in efficient insulation of cryogenic devices; an apparatus
and method are described for determining the thermal conductivity and specific heat of flat specimens of such
insulation working over narrow temperature ranges {10-20°), which means that the temperature dependence
of the thermophysical parameters can be determined. Results are reported on the thermal conductivity,
thermal diffusivity, and specific heatfor polyethylene terephthalate (PETP) film aluminized on both sides (Table1)
for the range from 50 to 350°K and a pressure in the insulation space of 3-10~4 N/m?,

Stationary and nonstationary techniques were used in measuring the thermophysical parameters; the
error of measurement was evaluated with particular emphasis on the errors arising from the uneven distribu-
tion of the heat flux in the specimen.

The data on the thermal conductivity and specific heat may be represented as Ay +A,T +A,T? +A,T3;
Table 2 gives the values of the coefficients for A = f(T).

The empirical relationship for types II and II takes the form
¢=2—0.06--0.65-10-2T —0.136.10-472 -+ 1.4.10~8T% (k] /kg - deg,)

The effects of screen punching on the effective degree of blackness and thermal conductivity were also
examined; results were recorded on A =f(T) and a =f(T) for pressures in the insulated space for 3-10~ to
1.33-10-! N/m?, and an equation was derived for A = F(T, P), which was compared with the measurements.

Results allow one to calculate the insulation behavior of such a system under a great variety of working
conditions.

TABLE 1. Characteristics of Insulation Specimens

I Packing den-

Type Screen material i Packing material sity, -
i layers-cm
! |
I |PETP, crumpled, 10 p Glass cloth made of microfiber | 22
without bonding agent '
I | PETP, comugated, 8 u | EVTI~T glass cloth b 18

{ EVTI=T glass cloth g 17

I PETP, corrugated, 8 p, |

punched 2 X 10 mm !

TABLE 2. Coefficients and Polynomials for A =f(T), Vacuum3-107*

N/m?
Type l‘ A, L Ay A, { Az
I 0 | 0,154.10-2 | —0,069-10~% | 0,0409-10~¢
1 0 i —00035.10-2 |  0,192.10~4 0,0074-10~9
il 0,004 f 0,280.10-2 | —0.12 .10-%+ | 0,062 -10~¢
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MATHEMATICAL MODELING OF THE INTERACTION OF A
STREAM OF VISCOUS INCOMPRESSIBLE LIQUID WITH A
ROUGH WALL

L, V. Poluyanov and R. I. Ayukaev UDC 531.15:539.371

One of the effective methods of intensification of processes ofsheat, and mass exchange between a liquid
stream and a solid surface is the regulation of the microgeometry of the latter. For example, the milling
of projections or the mounting of diaphragms on the surfaces of heat-exchange pipes allows one to increase
the heat exchange (when Re > 1) by 1.5-2.5 times [1, 2]; the use of grains with a developed microgeometry in
granular filters in the separation of low-concentration suspensions increases the yield (when Re ~ 1) of the
installations by 1.5~2.5 times [3]. The clarification of the dependence of the structure of the stream on the
microgeometry of the surface over which it flows is of interest in this connection. Experimental methods
prevail in the solution of such problems because of difficulties of 2 mathematical nature. In the report being
published an attempt is made to study this problem analytically with the aim of obtaining some generalized
estimates.

The model study of the effect of the microgeometry of the surface on the structure of a stream of incom-
pressible viscous liquid flowing over it was conducted on the basis of the solution of the problem of Couette
flow with a stationary corrugated wall. A generalized parameter -— the wave number — is taken as the char-
acteristic of the microgeometry by analogy with [4]. The flow is understood as plane and steady while the cor-
rugation is considered as a small disturbance of the surface over which the flow occurs. The principal condi-
tions of correspondence between real flow and the model under consideration are laminar attached flow over
the surface and smallness of the amplitude of the disturbance in comparison with the distance between the walls,
The solution is given for the limiting modes of flow of Re <1 and Re > 1 and some generalizations are made
to modes of flow with the joint manifestation of viscous and inertial effects (the most inconvenient for analytical
studies).
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JET MODEL OF FLUiDIZATION AND ITS
ENGINEERING APPLICATION

N. A. Shakhova* UDC 532.517.4

The jet model, proposed by the author in 1965 on the basis of a theoretical and experimental study of
turbulent gas jets discharging into a fluidized bed, treats the motion of the fluidizing agent from a gas-distri-
bution grid of any construction in the form of jets which develop as in a homogeneous medium of different prop-
erties with partial or total degeneration of the jet flow into filtration flow. With the discharge of a fluidizing
agent with a density less than the bed density the jet.flow through the bed degenerates into bubble motion. Be-
cause of the disruption of the continuity of flowthe pressure inthe jet tongues increases, and when the separation

* Deceased.
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pressure is reached, when the separation force exceeds the force of resistance, the jet breaks up and
tongue—bubbles tear off,

The studies carried out over the last decade by the author and colleagues on the hydrodynamics and heat
exchange in jets and in a fluidized bed made it possible to supplement and develop the theoretical foundations
of the jet model of fluidization and its engineering application.

On the basis of the jet model one can explain the origin of the bubbles and the pressure pulsation in a
fluidized bed, the nature of heat and mass transfer in a fluidized bed, and the effect of the bed height and the
velocity of discharge from the openings of the gas-distribution grids on the amplitude and frequency of the
pulsations and the intensity of heat and mass exchange.

The jet model allows one to make a number of recommendations:

1) to design and construct gas~distribution grids in intimate connection with the processes of heat and
mass transfer;

2) to calculate the processes of heat and mass transfer separately in three established zones: the tongue
zone, the bubble development zone, and the main volume of the bed;

3) to decrease the amplitude of the pressure pulsations, the dynamic entrainment, and the oscillations
in bed height through the creation of a tongue zone only in the fluidized bed or through artificially
introduced powerful gas jets;

4) to choose the blowers and conduct the strength calculations of apparatus containing a nonuniform
fluidized bed with allowance for the pressure pulsations which develop and the rocking of the appara~
tus which results from them,

Dep. 3329-76, February 20, 1976.
Original article submitted January 22, 1976.

ANALYTICAL SOLUTION OF THE PROBLEM OF THE
ACCURACY IN RECORDING THE TEMPERATURE PROFILE
OF A HEATED LAYER OF CONDENSED SUBSTANCE

WITH A FLAT PROBE

Yu. V. Chernov UDC 536.5

When the temperature field of a heated layer of condensed substance is measured with a flat probe it is
distorted because of the difference between the thermophysical characteristics of the probe and the material
being studied. This leads to a methodological measurement error which can prove to be very considerable
in a region of large gradients of the original temperature profile,

The methodological error is studied on the assumption that the rate of motion of the boundary is constant
and the thermophysical characteristics do not depend on the temperature. These assumptions reflect the case,
which is of principal practical interest, when the disturbing effect of the probe is small and the temperature
dependence of the thermophysical characteristics can be allowed for in the solution obtained by calculating for
the expected extreme values of the characteristics.

With A, > A the following calculating equations are obtained for the limiting values of the relative temper~
ature measured by the probe, which are realized with a constant temperature at the moving boundary equal to
its initial value (when the probe lies at a large distance from it) and a constant heat flux density at the moving
boundary also equal to its value at the initial time:

T min=
min P
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where u is the velocity; @ = M cy is the coefficient of thermal diffusivity of the material under study; ¢ is the
distance from the front surface of the probe to the moving boundary; = = (u/ N ey, 0z is adimensionless param-
meter of the probe; and c;, vz, and 6z are the heat capacity, density, and thickness of the probe. Equations
for Tmm and Ty ax with finite coefficients of thermal conductivity and equations for the temperature field are
also obtained in the article.

Graphs of T = flu/a)t] for several values of the probe parameters % are presented for the case of Ay >
which make it possible to determine the probe thickness on the basis of the allowable measurement error. The
graphs can be useful for estimating calculations and in the case when the law of motion of the moving boundary
as a function of the surface temperature is unknown.

Dep. 2900-76, July 2, 1976,
Original article submitted October 20, 1975.

EXPERIMENTAL STUDY OF CONVECTIVE HEAT
EXCHANGE IN WINDOWS WITH SUN PROTECTION

E. S. Gul'karov and E. T. Artykpaev UDC 536.24

Processes of convective heat exchange in window structures with two variants of sun protection — louver
elements in the space between panes and outside in front of the glazing — are studied on a laboratory installa-
tion using an interferometer.

The thermal and air regimes in the model of the light opening were imitated by contact electrical heating
of the elements of the opening and the use of a wind tunnel. Visual observation and photography were conducted
over the entire cross section of the model of the light opening with subsequent combining of the interferograms
obtained tfo estimate the overall pattern of the temperature field in the working zone and the hydrodynamics of
the process. The relationship between the geometrical, hydrodynamic, and other parameters determining the
intensity of heat exchange was established on the basis of an analysis of the experimental data. As a result,
generalized functions are obtained (Table 1) for calculations of the average dimensionless coefficients of heat
exchange at the surface elements of a light opening with several thermal-air regimes characteristic for the
conditions of exploitation of transparent barriers in regions with a dry hot climate, The empirical coefficients
¢y, Cy, and c;y entering into the equations are represented in the form of graphic functions (Fig. 1) of the fac-
tors determining the heat-exchange process (the regime and the geometry of the system).

TABLE 1. Experimental Conditions and Results of Studies of Con-
vective Heat Exchange in Window Openings Covered with Sun Pro-

tection
Arrangement of sun- o Heat-ex-
protecgtmn louvers in | ReBImE 1 model of change SUr- | -rireria) dependence
profile of light open-| hght opening faCt? in test
ing | region
. I T
In space between Closed interlayer Glass Nu ~ 0.183 (Gr > Pr)!/2
panes Louvers Nu == (0 29 + 0, 32p) b4
A A(Gr - - pry% 29
i TS 0.30
| Ventilated interlayer | Glass Nu=6.07 Rc
Louvers Nu = ¢; Re?- nom
Qutside in front of Blowing by air stream | Glass I_\I—__ Re?/ezo
glazing (m.nd pressure) Louvers Nu = Renom
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Fig. 1. Empirical coefficients c;, ¢y, and c; as functions
of p, ¥, and b;/h.

By the experiments with an airtight interlayer it was established that the process of heat exchange at the
glass surfaces intensifies with an increase in p with the other conditions being equal. Variation in the simplex
p does not have an important effect on convective heat exchange during air filtration in the window space.

A departure from frontal blowing on the model of an opening with outside louvers leads to a decrease in
the intensity of heat transfer from the surfaces of the elements of the light opening.

NOTATION

b, louver width, m; h, distance between louvers, m; ¢, angle of inclination of louver to horizontal, deg;
p =b cos ¢/h, characteristic of geometry of sun protection; ¢ and n, empirical coefficients; N_u, averaged
Nusselt number; Gr, Grashof number; Pr, Prandtl number; Re = GI/vyF, Reynolds number; G, air flow rate
in space between panes, kg/sec; I, width of air interlayer, m; v, kinematic viscosity of air, m%/sec; y, air
density, kg/m?; F, cross-sectional area of air interlayer, m?; Repom: nominal Reynolds number; ¥, angle
of attack, deg.

Dep. 2901-76, July 1, 1976.
Original article submitted April 18, 1975.

COMPARATIVE ANALYSIS OF CALCULATING FUNCTIONS
FOR THE PROCESS OF COOLING OF CHANNELS WITH A
GAS STREAM

V. G. Pron'ko, G. M. Leonova, UDC 536.244
and A. I. Raigorodskii

The analytical solutions of Anzelius, Schumann, and Nusselt for the process of cooling of long channels
with gas are analyzed. The application of these solutions to the conditions of problems of cooling cryogenic
equipment without further transformations is inadvisable for the following reasons. In the analytical solutions
the heat capacity of the specimen material was taken as constant, whereas in cooling by cryogenic coolants
the heat capacity varies quite considerably. The equations describing the temperature variation of the object
being cooled must be solved jointly with the complicated equations describing the connection between the most
important parameters of the refrigerating installations: primarily the coolant flow rate, its temperature at the
inlet to the object being cooled, etc.- In this connection it becomes necessary to simplify the form of the equa-
tions describing the temperature variation of the object being cooled.

In the article the analytical solutions are compared with experimental results on the cooling of channels
by gaseous nitrogen and helium. It was shown by an analysis of the classical solutions and by the experimental
results that when St(J/d) > 1 and Bi «1 the intensity of heat transfer does not affect the nature of the variation
in the temperatures of the object and the coolant, the only complex independent variables being the ratios of
heat capacities of the body and the gas and the homochronicity number. Exponential functions obtained by the
author, which are simple in form and which approximate the experimental data with an accuracy of £15%, are
recommended in the article. It is shown that results calculated by the Schumann solution using an average
value of the heat capacity correspond considerably worse with the experimental data than results calculated
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from exponential functions using values of the heat capacity corresponding to different sections of the temper-
ature variation.

Dep. 2902-76, June 14, 1976.
Original article submitted December 9, 1975.

COMPUTER CALCULATION OF RADIANT HEAT EXCHANGE
.IN AN AXISYMMETRIC SYSTEM OF TWO BODIES ON THE
EXAMPLE OF A CAVITY BOUNDED BY THE SURFACES OF
A CONE AND A CYLINDER

S. P. Rusin ' UDC 536.3

The problem is analyzed in the same formulation as in [1]. In contrast to {1, 2], both bodies can have
a nonplane shape. The effective emissivity eef(£) of the cavity was sought (Fig. 1; the geometrical dimensions
are normalized to the radius of the cavity opening). The values of eef({) were determined from the system of
two integral equations (1a), (1b) by the method of iterations (the notation here is analogous to that of [1]):

n B3
g (10) = (& (1) -+ R (o) ({ (eeg ) 7 () — g lmo)) Koo m dn+ | (eer®1: @)
0 0

—eef(E) fa (BL )Y Ko (Moy &) dE-+eef () 2 (B ) @2 oy F2)))/ (1-R {(n) @1 (1. F1)): (1a)

EL
eef (%) = (€ (Bo) -+ R (B0) X (| (eef(3) F2 () — eef Go)) Ks (3o, B)
b

"L
XdE+ § (Eef () fo () — eef (=0} f5 (n=0)} K, (Zo, W) dni+eef(n=0} fy (n=0)%1 Bor FIIN/(1—R (Z0) 43 (500 Fal); (1b)
i

M =Es/Es(my);  72(8) =Eo (8)/Eg(Mads 2 (5) =Eo (B)Eg {30 Ta (W =Eq (W/E, (o).

Some of the data for ¢ = 0 are summarized in Table 1, Values of gy are presented there also (qzis the ratio
of the heat losses from the given cavity (gray model) to the heat losses from an absolutely black body at the

TABLE 1. Dependence of go; and qyon &, 17, and §

l 5eff0T§=Oand§=§L 7y
e i n o° . a0
| 15 | 60 ; 80 3 | 45 | e0
: ! [

0,5 ! 0,9913—0,9900 | 0,9897—0, 9889 0,9885—0,98841 0,8425 | (0.8353 !0,8353
0,75 | 8 0,9972—0,9965 ; 0,9964—0 996010 9958—0,9957 0,9399 ll 0,93&9 0,9319
0,5 ! 0,9997—0,9987 | 0,9988—0, 9980[0 9985—-0, 99841 0,9752 ; 0,9752 {0,9752

L 0,985 2 51 | 8330
0,5 0,9685-0,9553 | 0,9587—0,9529 | I 0,9499—5,95201 0.835! | 0,8343 {0,833
0,75 1 4 0,9995--0,9851 | 0,9868—0,9837 | 0,9831—0,9834 0,935_)8 | 0,931 1¢,9309
0,9 | 0.9969—0,9950 | 0,9956 0,994 | 0.9942—0,9942| 0,9750 | 0,9749 |C,9749

| - i .-

5 ! 0,9204—0,8727 | 0,8878—0,8683 0,8549-0,8719 0,82‘20 0,8:91 0,8114
95 1 o 1079750 0.0539 |0, 93200,0515 0,046+—0,9598| 0,9272  0.9253 |0,9240
0,9 0,9920—0,9841}0,9874—0,9831 lO 9814-—0,9834 | 0,9737 ; 70,9731 10,9726
0,5 ! 0,8610—0,7684 1 0,7942—0,7638 | §,7224—0,7783 0,7847 ‘..:564 0,7538
0,75 k 1 0,9524—0,9068 | 0,9223—0,9953 ¥ 0,8827—90,9117 ¢,9139 1 (},:‘O(ES 10,9006
0,9 | 0,9842—0,9664 | 0,9730—0, 9657 | 6, 9567—0,9681 | 0,965! | 0,0604 ic 9642

i . -
0,5 | 0,8109—0,6878|0,7132—0, 689310 6116—9,7116] €,7388 & 0,742 10,6798
0,75 11 0,5 0,9305—-6,8558 0,8822-0, 8667 | \ 0,8206—0, 87921 0,8933 i( 0, 82@3 %0,8634
0,9 | 0,9761—0,9502 | 0,9574—0,9504 ’ 0,9309—0,9555 | §,9614 ! 0,9350 [0,9497

' e In =
0,5 0,7388—0,5395 | 0,6062—0, 5173 '0,5115—0,5019| 0,6470 | 0,{198 10,5326
0,751 0 0,8946—0,7785 | 0,8220—0,7628 | 0,7585—0, 7514 0,8423 Lo0,8017 10,7697
0,9 | 0,9692—0,9134} 0,9327—0, 9061 !0 52410, 9307\ 0,59383 1 9.9198 {0,9041
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Fig. 1. Diagram of cavity.
same temperature). For 8 = 90° our data agree with those of [3, 4]. The results of calculations for noniso-
thermal cavities (A = 0.65 p) are also presented. As a rule, the functions eef(¢) have a minimum within [0, £1].

The numerical results obtained can be used in radiant pyrometry, in modeling porous materials by a
system of cavities, and in creating artificial emitting surfaces, and the calculating algorithm itself can be used
for calculations of thermal aggregates and structural elements having axial symmetry.
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CALCULATION OF RADIANT HEAT EXCHANGE IN AN
ISOTHERMAL SYSTEM OF SELECTIVELY EMITTING
SOLID BODIES

S. P. Rusin UDC 536.3

When the radiation wavelength A, the field of temperatures T, and the field of the optical parameters ¢
and R are given the calculation of the radiant heat exchange is connected with the solution of an integral equa-
tion of the type (diffuse emission and reflection)

Bef(hy M) Eq (A, M)=5(h, M) Eq(h, M)+ R (%, M) f eef(h, N) Eo (A, Ny dg (M, N), Y
M, NEF o
(the notation is the same as that in [1]).
Numerical integration over the spectrum is carried out after the calculation of eef(A, M),

It is proposed to approximate the emission spectrum of solid bodies within a spectral band AX by a linear
dependence on A (by a polynomial in the general case). The radiation characteristics calculated on a computer
by the proposed method and in accordance with a "gray" model were compared for an isothermal cavity [1] of
tungsten. The data coincided within limits of 5%. The agreement obtained is analyzed from the position of (1).
Assuming that eo¢(A) is a linear function of A and using the theorem of the mean value of an integral, after in-
tegration of (1) in the interval AXx we have

of(hays M) = (5 (M) + [ eer(hays N) (T (VT (W))* R (M, N) dp (M, N)/AF (M), @)
&
hay= | Mo, M) dr/ [ Eo@, m)dh, (2a)
(&%) (&3 .
hav= | ARG M) EsOn My b/ [ RGO, M) Eo(h M) db, (2b)
(An) (&%)

97



ey (M) = 5 e(h, M) Eo (b, M) dAJ(o,T® (M), (2¢)
(AR)

AF (M) = f Eo (A, M) dh/(o,T* (M), (2d)
(AN)
RM, By = [ R, M) Eo (s N) dhfio, T4 (V)), @2e)
(A%)
and since in our case
‘ J}‘av"\*'x;v' ) (3)

the system is quasimonochromatic. Moreover, the system is isothermal, and consequently R(M, N) = Ry (M) =~
1—ex(M). When AF —1 the quasimonochromatic system coincides with a "gray" model. It is just this which
explains the closeness of the "gray" approximation to the real emission from a cavity in our case. For a non-
isothermal system R(M, N) =Ry (M) and one must use (2) for the calculations. Using the iteration method one
can choose the quantity AA such that Eq. (3) is satisfied with the required accuracy, i.e., the system is quasi-
monochromatic with the required accuracy.
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THICKNESS OPTIMIZATION FOR THERMAL
INSULATION ON A PIPELINE

M. Yunusov UDC 519.9

If a pipeline is to carry materials at temperatures above or below the soil temperature, the thermal
conduction in the soil may be accompanied by changes in phase state (for instance, thawing).

Any change in the physical state of a soil usually results in distortion of the pipeline, but this can be
reduced or eliminated by appropriate insulation (provided this is adequate). Here we consider thickness op-
“timization for such insulation for a pipeline carrying products at a temperature above that of the frozen soil.

The temperature distribution in the soil is determined by solving the Stefan's problem [1, 2], while the
temperature of the product is derived from another formula [2, 3]. The optimality criterion is a functional
dependent on the deviation of the radius of the phase-transition boundary in the soil from the permissible value,
which itself is determined from strength considerations.

Physically, this means that the thawed depth must lie within a certain range subject to a safety margin
on the amount of insulation and specified maximum and minimum thicknesses for the latter,

Numerical solution of a boundary-value problem of Stefan type is possible via an unconditionally stable
scheme previously presented [1-3]. In this method, a nonlinear system of algebraic equations is derived,
which is then solved by iterative fitting [4].

The optimum insulation thickness is determined numerically by successive approximations; it is proved
that the iteration converges. The method is illustrated by calculating the optimum thickness for insulation on
pipelines in frozen soils operating under various conditions, for which purpose a BESM-6 computer was used.

The results show that optimum thickness for glass-fiber insulation is 9.5-10.5 em for the length up to
20 km, 7.5~8.5 cm for the length between 20 and 40 km, 6.5 cm for 40-50 km, 5 cm for 50-60 km, 3.5-4 cm
for 60-80 km, and only 2.5 cm for the remainder. These results can be used in strength and stability calcula-
tions for pipelines.
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NONIDEAL THERMAL CONTACT BETWEEN PLATES
UNDER NONSTATIONARY THERMAL CONDITIONS

Yu. M. Kolyano and O. F. Girnyak UDC 539.377:537.47

The conditions for generalized nonideal thermal contact between plates via a thin intermediate layer are
derived; the system contains no heat sources, but there is heat transfer to the environment at the sides in ac~
cordance with a generalized form of Newton's law, It is assumed that the temperatures and heating rates for
the elements are initially zero.

The equations of thermal conduction for the intermediate layer are averaged over the width on the basis
of linear variation of the temperature within the layer, and conditions are then formulated for generalized
nonideal contact; if the system is symmetrical about the median plane, these conditions take the form

3 (Ty+T, / or ar Co O0(THTy)
0 '—(OLS;’_—L +2 [dl (bﬁPl‘f‘ "”a;—> —d, (bz%'i— 6r12 )] —2, {Ao (T1+T5)—24,%e+ 9 '—“_é;“?—‘ =
#(T1—T5) aTy ( . 4T, a2 [ r i ong. s So OT=Ty) ]
Ay — a2 - -6 [dx by + dn) ~+dy \bz%*r on ~ R (T\—Ty) —24, iAo( 1—Tg) — 2Apte~ s T o J—O,
where
=
oT; (s, n, § w0
(Pi(S,n,r)=§“—L“(’5;"”2“€' dg;
]
(1) __ (0} (®
bi=-r’—w%_; d,-:ﬂ[i)_ ; G=1, 2),
3
0%, T, .

and Z, =1 + 1. 8/87, 7,4) (i =0, 1, 2) are the relaxation times for the heat fluxes in the plates and layer;

Ay =46h), Cj = 46hc‘(,°), Ay = 2haj are the reduced thermal conductivity, specific heat, and heat transfer from
the surfaces z = +6, while Ry = h/\;6 is the thermal resistance of the layer; T;, T, Je are the mean temper-
atures of the plates and environment; and 7 is the time.

Particular cases of these conditions are discussed.

Dep. 3319-76, August 12, 1976,
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CALCULATION OF THE TEMPERATURE IN A CLOSED
VOLUME WITH DISTRIBUTED HEAT SINKS ON THE
INNER SURFACE

R. K. Nikul'shin, E. F. Petriman, UDC 536.2.01
and A. V. Kontsev

A method is given for determining the nonstationary temperature of the air in a closed insulated volume
having uniformly distributed heat sinks on the internal surface, which are provided by refrigeration or by a
cryostat.

It is also assumed that the heat flux is one-dimensional and that Bi > 10, which results in boundary
conditions of the first kind, with the temperature uniform over the internal surface of the chamber (the evap-
orator chamber), the temperature being that of the coolant t,, while theair temperature t.} in the chamber
is constant, as are the heat-transfer factor o and the output P of the heat sources.

The air temperature within the chamber is defined from the heat-balance equation

dt
3 Giee FERLD —p—aF g, ()~ 1o (0] )
or
do (T) _
T The®=0(, (2)
where
b= —F ;o @©(1) =———“aFQ4) m—F (3)
2 Gici 2‘ Gici
The evaporator temperature in the refrigerator varies exponentially:
95 (%) = Ogmax (1—~™F), “@)

where m, is the cooling rate and @y, is the maximum temperature difference sccurring when the machine
has reached a steady state,

The solution to (2) for w(r); =, = 0 subject to 4) is

1 [ 2F8omax — P (1—et% — FBgmax (e _e—-b‘t)] . (5)
b 0 —m,

Also, Oy ax is determined by solving the system for the steady state:

Qe =F(80),
Qe = %ﬁ: By @omax + P, . ©)
by specifying the time 7, such that
m!,=rc= e, @

and then (5) gives my.

The cooling source satisfies (7) if the following inequality is obeyed:

w(t) | 46 dw
Qre (V) > Ginfin —d: +Gs¢s —‘_—;T(T) + Z Gic; "‘dil“ , (8)
where ﬁ(’r) is the temperature of the insulation averaged over the volume:
~ ) . m o (e—/nof . e~Ahr) (9
— Mt (i
4 (1) = Bpmax [0‘5(1 e+ — 2 T G ] . )
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When 0;(1), w(7), and u(7) have been determined, (8) is solved throughout the range 0 = w(r) = we in order to
check the result for m,.

Dep. 2904-76, July 5, 1976.
Original article submitted February 6, 1976,

GENERAL METHODS OF DETERMINING CONTACT
HEAT TRANSFER FOR A ROD SYSTEM

V. G. Pidodnya and V. M. Khorol'skii UDC 536.21

Consider a system composed of n bounded rods 0 =< x =< aj having a common contact region x = 0 (inter-
mediate layer}, in which specified amount of heat Q(t) is generated. The intermediate layer has a temperature
T(t), and a liquid is pumped through this, which acquires the temperature of the contact region exactly.

The following system of equations describes the heat propagation in each rod on the basis of the heat
transfer on the side faces:

09; 020; ®;
= ax; — ] (8;—8;) + f $in O<x<a; ¢>0. {1
The boundary conditions take the form
00; . 00; |
—hi 0xl o — 9 b axl ix:ﬂi =47 (1), Bl =91 (), Tlieg=To 2)

where g; (t) are unknown heat fluxes and g (t) are known ones.
The temperature distributions in the contact areas satisfy the conditions for ideal thermal contact:
9;’{x=0 =T7T(), i=1,2, ...,n <3)

It is also assumed that the following heat~balance equation applies for the contact zone:

S ar ¢
e = S+ nT®)+m L @

i=1

The theory of Green's functions is used to reduce the solution to (1) and (2) to that of a system of inte-
gral equations of Volterra type containing the weak singularity

¢
0; (x; £) = —;1:5 ‘1 G (8 G (% 0; t—n) dv -+ F; (% 1), , (5)
.0/

where Fj (x; t) are ‘known functions and Gj (x; £; t) are Green's functions that satisfy (1) and zero boundary con-
ditions of the second kind.

An operational method is given for solving (4) and (5}, which gives a general solution in terms of trans-
forms.

An approximate method is also given, which involves time averaging; the heat transfer is considered for
a specified time interval (0, t), while the heat fluxes qj(t) are averaged over this period. This averaging
method results in a system of algebraic equations. Finally, a method is presented for solving (4) and (5) by
approximating i (t) in power-law form, This reduces the solution of (4) and (5) to that of algebraic equations
of triangular type, which are simple to solve numerically.

NOTATION

wi, A, bj, thermal diffusivity, thermal conductivity, and heat-transfer coefficient; v%=hiPi/AiSi, coeffi-
cients for heat fransfer from the rod surfaces; Sj, Pi, cross-sectional area and perimeter of rod i;
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m, thermal capacity of cooling liquid passed through contact space in unit time; i = ¢i(x; t), given functions
describing the heat-source distribution in the rods; 61 = §j(x; t), temperatures of the external media.

Dep. 3326-76, July 5, 1976.
Original article submitted December 17, 1975.

ANALYSIS OF THE SOLUTIONS OF SOME NONLINEAR
PROBLEMS IN NONSTATIONARY HEAT CONDUCTION

N. M. Tsirel'man UDC 536.21

-0 6 0
By means of the substitution (8) = g F(0) {(U q)—'fg—)] dz} dx, the heat-conduction equation for an unbounded
J .

v

0

plate with a relative heat-conduction coefficient f(8) and a volumetric heat capacity ¢(#) which depend ‘on the

temperature ¢ was reduced to the form
»_
dt  onp
and was solved by a finite-difference method using an implicit absolutely convergent Crank—Nicholson scheme
with the boundary conditions

P@), 0<n<l, >0 1)

(0, )=0, 0<LKl, 2)

o, H=1, 1>0, (3)
)

EI‘,YFU:O. (4)

At the initial instant of time we used at the boundary of the region the conjunction function

T — Ty\2
~(——) 0<T< T
61, v)= To

1, T>T,

and the time step was taken to be 7; = 0.0001. In addition to calculating 6(n, 7), we set up a subprogram
called "Interpretation" which carried out on each time layer a search for values of the temperature 6 equal
to 0.1, 0.2,..., 0.9 or the points closest to them in the points of the space n = 0,05, 0,10, 0.15,..., 0.95.

The selected method of solution was checked with a control problem [1] on a temperature wave in an un-
bounded plate with F(6) = 0.5 6% and @(0) =1, which has an analytic solution, and was then applied to the follow-
ing cases: {
a) f(B)=1-+a8; b (@ =exp(ad); c) f(9}=(1—_;e;; for ¢ (6) = 1.

The results obtained enable us to conclude that the numerical calculation of tempex"ature fields in the
peripheral parts of bounded bodies may be replaced with the solution of a nonlinear problem for an "identical"
half-space (for boundary conditions of the first kind), when it is possible to reduce partial-differential-equa~-
tion problems to ordinary-differential-equation problems whose solution can be obtained more simply, or even

1
to pass in some cases to linear equations. In those special cases in which 1< f F(8)d8 <2, the temperature

i
field in the peripheral part of a bounded body for any monotonic f(9) can be determined with sufficient accuracy
by using, for example, the available analytic solutions of [2] for the half-space without satisfying the condition
of "identity" of the bounded body and the half-space with respect to f(9).

All the results cited are also valid for the case ¢(#) =1 if instead of 8 we take

9
u= | g@©dm.
0
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SOLUTION OF HEAT-CONDUCTION PROBLEMS FOR A
HOLLOW SOLID OF REVOLUTION WITH VARIABLE
BOUNDARY CONDITIONS

Yu. L. Khrestovoi UDC 536.201

The axially symmetric two~-dimensional temperature field of a hollow bounded solid of revolution with a
distributed heat source F and arbitrary initial distribution, with length 1., outer diameter R, and inner diame~
ter ry, when the boundary conditions are nonsymmetric boundary conditions of the third kind and the temper-
atures of the medium are functions of time and the coordinates, is described by the system

2, 2 t
o _ ;e (r—~§ )+F(z, o), E=t(r ), 1)
. or

dv 32 r or

prl, O<p<l, 0gel, O0Cv<om,

where
_et &8 e _no L
T PR TTRMT R STR
The boundary conditions are
O Jr=p u[ !’-“—‘V-— fu(z’ ul or 'r=1:’"h[t Jr=1 —1} (& V)],
(2)
ot i ; ot ; :
gz ,220_ ol [2=0""*Ff, (r, 0}, E IZ=1: _‘hl It lz=1 —tfx (r, o)1,
where
o R aR ool o, L
T e S e Y
The initial distribution is )
¢ ,‘VUZO = @ (2, ). (3)

Here £ and p are dimensional coordinates, A and ¢ are the thermal conductivity and thermal diffusivity, t, and
« are the temperatures of the medium and the heat-exchange coefficients, the indices refer to the heat-ex-
change surface.

By successive reduction of the boundary conditions to homogeneous boundary conditions and subsequent

application of the Hankel transform
1

Tu= | /TV, () dr, Vo(pr)=clo(pr) —dYo(pr).
i

h i v )
c=Y, (pp)+—’f-‘— Yo (pw), d=7“ Jolpp) +J1 (pr), p={ps. i=1,2, ..., ®}, 4)

r 17 A
ERRLEAC R R A ERe ) =] Lvor— Vi) || 2 ot 04 ()

4

J and Y are Bessel functions) and the Fourier transform
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1
I
up = S uWo (k2) dz, W, (k2) = coskz 1+ —;—“ sin kz,
[}

(5)
2
k={k, i=12,3, ..., o}, ctgk:-—-k—ll-q-fﬂ-
k(o + hy)
the solution can be written as
Vo (pr) Wy (k2) exp (— Mepo) ¥
pr 2) exp (— v r .
t=ter 3 N Do VolE)e = H(%—tcfho)
dd i . R 1
v SrVo(pr)dr fwo(kz)az i
i h
v 1 1 3
" o ot (0 P
X Vo (pr) Vo (£2) drdz—l—'g j 5( Do T( ?<r - )— p-P)—!—F) Vy (pr) W, (k2) exp (Mcyo) drdzdo), (6)
0 n 0
where
fo=P+ P Mep—K+e0% P=gt 2= (g, 4y
e - Py, cr , o.hl_!_?‘go“h’
t (r—w?
P == — (¢ — 1 T
W=t (I—pyh+2 Ur—=1) 1—n @
1 opP 1 aP
=t — P [T , =t —P | — . B
8o o u!z:OT ho 3z z=0 81 t,l u’z—l h‘}. oz i2=‘

We also obtained a solution for a one-dimensional problem for a hollow disk, a special case of which is
a distribution in an unbounded hollow cylinder.

The solution can easily be generalized to a continuous solid of revolution. As y —0, P“ =t £
Wolpr) =Jo(pr), p=hio () d1(P)-

The solutions given above can be used for estimating the accuracy of numerical, analog, and other ap-
proximate methods of solution of heat-conduction problems.

Dep. 2899-76, July 8, 1976.
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ONE METHOD OF SOLVING PROBLEMS OF HEAT AND
MASS EXCHANGE WITH STOCHASTICALLY PERTURBED
COEFFICIENTS OF THE EQUATION

P. A. Moroz and A. P. Korostelev UDC 518.519.2

The first boundary-value problem is analyzed for the equation

2 2, (
™ y)[@ u(x, ¥) +6 a{x, y)

Ox? dy* ]—C (. B)-u(x 95/ (% 9)=0,

where the coefficients k(x, y) and c(x, y) represent Gaussian random fields. Let k(x, y) =ky(x, y) + ak(x,ylw),
where k(x, y) is the average value of the coefficient; o is a small parameter; and k(x, ylw) is an isotropic
random field with a correlation function B(r). Analogous assumptions are made relative to the function c(x, y).
It is proposed to solve such problems by the Monte Carlo method [1], realizing the trajectories of diffusional
processes. In contrast to the well-known "lottery" methods for the random fields k(x, y) and c(x, y), itis
proposed to model the random properties of the medium by a time-dependent "noise" & (tlw) in the realization

of the diffusional trajectories. Thus, with c(x, y) = 0 it is proposed to model the trajectories of diffusional
processes determined by the stochastic differential.equations dX% = VkO(XtU)dwt and dX; =k (Xg) + £ (lw)dw
where wt is a two-dimensional Wiener process [2]; then quantities (functionals of the trajectories Xg and Xt of
the processes) of the type
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Ty T

Jo= ( F (X9 dt; 5;(){,) dr

0 0

are calculated, where 7; and T are the times of departure of the respective trajectories from the region in
which the solution is sought.

On the assumption that the trajectories of the processes emerge from the point (x, y}, it is shown that
the average value of (J;~J )% is an estimate of the dispersion of the solution u(x, y) at this point.

An analogous estimate of the dispersion is demonstrated for the case of c(x, y) = 0.

To obtain such estimates it is important to correctly "ransfer"” the correlation of the coefficient k(x, y)
in space into the correlation of the random "noise" £(t|w) in time. The appropriate equation is obtained for
the determination of the correlation function ¢ {t!w) through B(r].

The proposed method can be realized both on a specialized probability hybrid (analog-digital) calculating
complex [3] and on a universal computer, although the realization is less efficient in the latter case.
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A LOCAL FORMULATION OF THE EQUATION
OF EXERGETIC BALANCE

G. P. Yasnikov and V. 8. Belousov UDC 536.70

The substantial and local forms of the equation of exergetic balance, in the derivation of which methods
of the thermodynamics of irreversible processes are used, are obtained for a stream in external conservative
fields in the presence of chemical reactions. The substantial equation of exergetic balance in the Lagrangian
form has the form

dett)

T

> (=3 e, - . o
—y- '\Jg +‘?_‘.61,~Jh) + e T ediff — To0" — I

The physical meanings of the terms entering into this equation are as follows: J{=rt.J,—1, > i the flux of
k

heat exergy carried by heat conduction;gf; and Tfk are the fluxes of heat and matter; 7, is the exergetic tem~

perature; t, 34,5 is the flux of heat exergy from the mass of components; Eehjh is the diffusional exergy
k k

flux; ey = —(13V:.§7’V)'re is the exergetic power of the viscous forces; PV is the viscous stress tensor; V is the
stream velocity; ¢y, ‘__J,,Fr is the exergetic power of the diffusional flux of potential energy; 7,o* =T, [~»J,,

T 5‘7.*9&4’2‘4“ th £ th
— iV T) j T is the power of the exergetic losses due to heat conduction, diffusion, and chemi-
% i

cal reactions; T and T, are the temperatures of the stream and the medium; Pk is the chemical potential; A,
is the affinity of the j-th chemical reaction; J; j is the chemical reaction rate; Iy, = =p(dl'/dt) is the power cor-
responding to the external work dl' = —vdp.
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The quantity e(L) represents the specific exergy of the stream (in the Lagrangian form) in the system
of the center of mass of an isolated element. The total exergy (in the Eulerian form)

1
ol E) — D) + "2*02 -+,

which takes into account the mechanical energy of the stream (Y4v?+ cp) is introduced for the transition to the
local form of the equation of exergy balance.

The equation obtained allows one to introduce the local flux of exergy and its sink (exergetic losses).
The results obtained can be used for thé analysis of continuous multicomponent systems in which chemical
reactions and processes of diffusion and heat conduction occur and viscous friction exists, from the point of
view of the possibility of the performance of external useful work by them.

Dep. 3328-76, July 19, 1976.
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A GENERALIZED GIBBS EQUATION FOR
NONAUTONOMOUS PHASE INTERFACE REGIONS

E. V. Veitsman UDC 536.755+532.6+541.11

A generalized Gibbs equation is obtained for a phase interface region (PIR) when the field of (quasi) ex-
ternal forces is nonsteady and its curl is equal to zero:

+ - + = + 1)
Tds — du— Tydeislo — 3 uydNg — D, N [(7h)a 83001
k k

The linear thermodynamics of irreversible and nonsteady processes taking place in the PIR (a surface
layer) is developed using (1). The method of I. Prigogine [1] is used in its development, i.e., the entropy
production g[S], the dissipative function ¥, and the generalized fluxes and forces are sought. In the process
(1) and the local energy balance are used. The local balance of potential energy is supplemented by a term
allowing for the nonsteady nature of the (quasi) external forces. The theory of surface forces presented in
[2, 3] is used. The phenomenological laws are formulated:

N
ao-Agr + g, (Xo)y 8+ X agk (X8, + ag,Xig Byg,

k=2

UQZ

Mx

Q’

R N .
(g = Z Ag 8+ aky (Xo)y + 3 age (Xpdp -+ X5 81,
Q=1 k=2

R N
Uplg = 3 Gy 8y o (Xeg + 3 agk (X -+ aqpX,gbi,
Q=1 k=2

R N dw

ow B 2 5 P
Pi,;:';‘ 0Aq 80+ apg (X,): 8, ¢Vapk(xk),6 -—n( ax +—\)+<~3—11—~.,)5,-g 5y ihj=1,23
9_1 k— ’

The first attempt at the formulation of the phenomenological laws for anisotropic regions was presented in {4].
However, in [4] a number of inaccuracies were committed which are eliminated in the present article.

NOTATION

+ o+ o+ . ) .

T, absolute temperature; s, u, pj, specific entropy, internal energy ( (J/kg), and chemical potential of
substance of type "k"; Tijs, &ijs stress and deformation tensors; p, pk, density of substance and partial density
of substance of type "k"; Nk pk/p, (1'k)1 , component of Tij due to the presence in the system of a quasi-ex-
ternal specific force acting on particles of type "k"; wi, Wj, velocity vector of center of mass; djj, 0ig,
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Kronecker object; X3, coordinate; Py 8 Iq, (If;)ﬁ’ generalized fluxes of processes of viscous flow, heaf frans-
fer, and mass transfer; Xj B Xq, Xkﬁ, (XI? , generalired forces corresponding to them; @yt apg» etc.,
phenomenological coefficients; 7, £, coefficients of viscosity and volumetric viscosity; 8;, B unit dimension~-
less vectors with matrices (111).
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THERMAL PROCESSES IN CUTTING WITH
SPECIFIED TOTAL HEAT~-SOURCE OUTPUT

M. A. Aranzon, G. A. Kulakov, UDC 621.791.011
and V. M. Khorol'skii

Steady-state heat transfer during cutting is considered for a three-body system: cutter, component, and
swarf. It is assumed that the heat-balance equation applies to the cutting zone:

Q=0+ 0+,

where @ =qjsj; 1 =1, 2, 3 are the heat fluxes in the cutter, component, and swarf via contact areas s;; Q =
pgV is the total output of the heat sources; py is the principal component of the cutting foree; v is cutting
speed; sy =bl; sy =bly; sy =blgs Iy =Ip+1lp; 1y =13+ Iq; b is cut width; Zr and Iy are the lengths of the con-
tact areas on the front and rear faces of the cutter; g is the length of the deformation area; and [ = lf + Lp.

The temperature T at the edge of the cutter (the contact temperature) is common to all the bodies in con-
tact; the contact temperature for each body is specified as

T=Qyv; i=1,2,3,

where y; are the thermal potentials, which satisfy the heat-conduction equations and certain initial and bound-
ary conditions.

We substitute the expressions for the heat fluxes in terms of the common temperature T info the heat-
balance equation to get a solution for the contact problem as

3
N 1]-1 [
T = — Qi =T—;i=1,2,3.
Q[}_vli Vi Vi

The main difficulty here is to calculate the vj, which are dependent on the speeds of the heat sources,
the geometry of the bodies, the shapes of the contact areas, and other factors.

Heat-source methods have given expressions for the thermal potentials for various conditions; for in-
stance, if the cutter is taken as an octant and the sources are distributed as quarter-circles of radii Iy and Iy,
then the following relations apply for weak cooling and vigorous cooling, respectively:

o= 2/(blh); 1=V ab),
where A; and h are the thermal conductivity and heat~transfer coefficient.

If the component is represented as a half-space, with distributed heat sources moving over the surface,
then

YQ:_L_F/U

g, K3
2\ Fr =1 2.
= T 4(02)’ ® E
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The swarf is taken as a plate with distributed heat sources moving over the end. The heat released by
the strain and friction on the front face of the cutter is incorporated to give

s M vto a0 —m i (22N
Vs = lnts 0, v+2(1—n) Azbl(‘i&)sk, )] '
where f(¢) = [F(g)]'i; ke is the shrinkage factor; n is a coefficient representing the heating of the swarf (0 =
n = 1); and tS is the cross-sectional area of the cut.

As it is comparatively simple to determine the total amount of heat deposited in the cutting zone, this
method provides a good means of comparing theoretical temperatures with observed ones. Such comparison
has been performed in the cutting laboratory at Kuibyshev Polytechnical Institute, and it has been found that
the discrepancy between the temperatures does not exceed 10%.
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THE ELASTOPLASTIC STATE IN A SOLIDIFIED
CYLINDRICAL CASTING

V. A. Zhuravlev and A. L. Golovanov UDC 539.319:536.5

The state of strain in a casting has been examined with the body represented as an ideal elastoplastic
body subject to Trask's yield condition. The crystallizing phase is considered as consisting of a plastic zone
in which the relaxation time for the thermoelastic stresses is negligible by comparison with the characteristic
solidification time, together with an elastic zone in which the stress relaxation time is very large. The yield
point is taken as a linear function of temperature.

The temperature distribution in the crystallizing casting is derived from the corresponding axially sym-
metrical Stefan problem [1]:

T (r; Fo) = — (— )& (<o) E_i/—l—\]
(r; Fo) - TFor exp — 7Fo /] [.. 1 Fo ) \4}:0*) .

Transfer to dynamic variables is used in handling the mechanical problem: the strain rates and the rates
of change in the stress tensor, This approach has been used [2] in calculating thermoelastic stresses for a
crystallizing cylindrical casting. The inverse transformation is performed in accordance with

0= \1(‘1(r; 1) dt,
€
where 7 is the moment of attachment of a point to the moving phase boundary and t is the current time. The
conditions of the boundaries of the elastic and plastic zones are used to derive expressions for the components

of the stress tensor in each zone together with the coordinates of the boundaries.
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CALCULATION OF THE TEMPERATURE DISTRIBUTION
IN A SOLID SUBJECT TO NONLINEAR BOUNDARY CONDITIONS

Yu. V. Vidin UDC 536.2.01

It is common practice to examine complex nonlinear heat-transfer processes by describing the transport
in terms of integral equations in which the unknown function is the heat flux at the surface of the body [1]. Un~
fortunately, the solutions to such equations cannot be represented in closed analytical form, apart from rare
special cases.

A method has been described [2, 3] for linearizing the boundary conditions by using the solution for a
thin body as the kernel in the integral transform; then one uses the following transform [2]:

to get a linear boundary condition of the second kind, while if one uses the following [3]:

%0— =exp —N f —f%, N = const, (2)
one gets a boundary condition of the third kind. Here f($) is the specified heat flux, which is dependent on the
surface temperature. When (1) or (2) is used in the modified-conduction equation, the nonlinear term can be
eliminated for bodies of medium heat capacity. Therefore, the integration for the initial nonlinear case can be

reduced to solution of a linear transport problem subject to boundary conditions of the second or third kind.

However, many numerical solutions are available for nonlinear cases and can be utilized in examining
heat propagation when there are more complex nonlinearities in the boundary conditions. For this purpose one
can use the following general transform:

S

U
[

g®)

dy
foy @)

[ L R—

bn [

where the function g(U) describes the heat-transfer law for a standard problem for which a solution is avail-
able in analytical, graphical, or tabular form, It is clear that (1) and (2) are particular cases of (3).

It is best here to select a standard problem from those available such that g(U) corresponds best to the
structure of F{#).

The expression for the complex appearing in the modified conduction equation is as follows when (3) is
used in the one~dimensional case:

I et (iU_Y .
g 4

This means that P is small in magnitude in both instances; first, if the heat capacity of the component is not
too large, we have (8U/8)? — 0, and, secondly, P tends also to zero when the derivatives ' and g' do not
differ substantially. If g(U) is chosen appropriately, the second condition can be met and thus the effects of
P can be minimized.
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TEMPERATURE DISTRIBUTION IN A
SEMIINFINITE CYLINDRICAL SHELL

A. N. Kulik, L. 8. Gul'chevskii, UDC 539.377
and Ya. I. Podkova

The temperature distribution in a semiinfinite cylindrical shell has been determined together with that
in a thin annular plate attached to the end, with the outer edge of the plate welded to a cermet unit in an elec-
tron-beam device. The theoretical system consists of semiinfinite plates and a strip heated by a line source
moving over the end at a constant speed.

Differential equations for thin plates with specified heat fluxes at the side surfaces are utilized along
with expressions for the internal heat sources in order to determine the temperature distribution in the plate:

AP T+ w=—(¢*+q"),

12
ApT* — — T* 4w = —3 (" —¢7),

where
e o 1 @
= 2A8; p: = - —_———
A=20p oxt ' oyt a &
-6 +5
T——L S‘tdZ'T*— 8 {aa
=% PT T ,Sz z
-8 =5

are the integral characteristics of the temperature t of the plate and

-té 3 +;6
w= 5 Wdz; w*=—3- 5 2Wde,
-5 ~6

where W is the density of the heat sources, g* are the specified heat fluxes at the side surfaces, and r =26/A
is the internal thermal resistance of the plate.

The solution is derived as follows. The temperature distribution in the plate is determined for a line
source moving over the end in the presence of heat sink on the side welded to the semiinfinite plate (cermet).
Then the temperature distribution is determined for a semiinfinite plate heated on the end by a flux equal to
that absorbed by the sink, which was not previously known.

As the mean temperatures must be equal at the interface between the annular plate and the semiinfinite
plate, the unknown heat flux can be determined, and this serves to define the temperature distribution in each
of the two bodies.

Calculations have been performed for the quasistationary state to give the dimensionless temperature at
the interface between the two plates; a study has also been made of the effects of heat transfer from the surface

of the semiinfinite plate.

1t is found that the maximum temperatures at the joint between the two plates occur behind the heat
source, where the temperature gradients are minimal.
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TRANSFER-FUNCTION DETERMINATION FOR A HEAT
EXCHANGER HAVING A SPATIAL DETERMINANT OF ORDER n

I. G. Chumak, A. I. Kokhanskii, . UDC 621.565:621.078,001.1
and S. N. Rogovaya

The transient state in a heat exchanger may be examined by means of differential equations in partial
derivatives; there are various methods of solving these equations in terms of the spatial coordinates, but
they all have the disadvantage that it is very complex or virtually impossible to derive the transcendental
transfer functions for such a system when the order of the spatial determinant for the system is greater than
two. A method is given for defining the transfer functions for a system whose equations have a spatial deter-
minant of order n, for which purpose the system is put in operator form as follows subject to zero initial and
boundary conditions (for a packed air cooler):

] as

R
B = e T ST A T A @O @)
[ S [— b.4 [
D= AT w0 P T g e @

Then an inverse Laplace transform is performed with respect to the spatial coordinate for each equation sepa-
rately and (1) is solved for the variables t,(H, p) and t(H, p) to get the transfer functions as

ta(f, p) A p) H
W{p, H) = L O p) T I ape BOAGIE 2)

This approach makes it comparatively simple and easy fo derive the transfer functions, especially as re-
gards analysis of the effects of parameters on equipment performance; the method has been tested via analyti-
cal calculations on the dynamic and static characteristics of an air cooler, and these were compared with mea-
surements. The results were in good agreement, For example, the coefficient given by (2) in this method was
Kty; = 0.84, while experiment gave Ki,; = 0.82.
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