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E X C I T A T I O N  O F  A C O U S T I C  M O D E S  IN F I L M  B O I L I N G  

B.  M. D o r o f e e v  UDC 536.423.1:534.142 

A photomultiplier has been used [1, 2] in a di rect  optical method of examining the fluctuations in the 
size of the vapor  cavity around a heater;  the output signals f rom the photomultiplier and hydrophone pass to a 
double-beam osci l loscope.  The behavior of the vapor bubbles has also been examined by high-speed photog- 
raphy, with the film recording the waves. The data have been examined in detail for various resonance effects.  
Phase relat ionships between the oscil lat ions and the acoustic signals imply that a cavity pe r fo rms  forced periodic 
pulsations under al ternating sound p re s su re .  The films and the phase shift between the oscil lat ions and the 
acoustic p r e s s u r e  indicate that the periodic component in the noise is produced by the bubbles before detach- 
ment f rom the vapor cavity (see Fig. 1) and also when bubbles in the cavity fuse. 

The volume fluctuations occur  in these bubbles as follows. Film boiling produces large bubbles that 
are  surrounded on all sides apar t  f rom the wire by cold liquid (tl < tsar); the rate v_ of vapor condensation 
in a bubble is governed by the surface  a rea ,  so the rate increases  with the s ize.  If the rate v+ of entry of 
vapor  into the bubble f rom the cavity is g r ea t e r  than v_, the bubble grows,  but v+ tends to fall rapidly imme-  
diately before the bubble becomes detached on account of the narrowing of the connecting neck. When v_ and 
v+ become equal, the bubble still continues to grow for  a short  period on account of the iner t ia ,  and thus the 
bubble is not thermal ly  in equilibrium (v+ < v-) when it attains its maximal  size nor is it mechanical ly  in 
equilibrium (the vapor p r e s s u r e  Pb in the bubble is less than the p re s su re  in the liquid P~o). Bubbles of maxi-  
mum size are  also not in equilibrium in bubble boiling, as has been found by direct  experiment  [3]. The r e -  
sult is that the bubble cont rac ts ,  which draws the liquid in, and the liquid continues to move under its inert ia 
and compress  the bubble until v_ and v+ become equal again. Therefore ,  the bubble at its minimum volume 
is also not in equil ibrium (v+ > v_, Pb > P~), so it begins to grow again. The bubble thus shows volume fluc- 
tuations due to the nonequilibrium thermal  p rocesses  (v+ ~ v-) and the motion of the liquid under inert ia .  
Several  complete oscillation cycles  can occur  before the bubble becomes detached from the vapor cavity,  and 
these produce a quasiperiodic p res su re  pulse of the corresponding length. 

Fig. i. Vapor bubble exciting a quasi- 

periodic sound pulse before detachment 

from the cavity. Investigated liquid -- 

ethanol of core temperature 23 i0.5~ 

heater -- a tungsten wire of length 25ram 

and diameter 0.5 ram. Heat flux is 245 • 

I0 W/cm 2. The sound marks (on the per- 

forated film track) indicate the compre s - 

sion phase in the acoustic oscillations. 
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Dep. 3330-76, July 16, 1976. 
Original  a r t i c l e  submit ted  F e b r u a r y  25, 1976. 

S T O C H A S T I C  M O D E L  O F  C O N T A C T  

A F I L L E D  P O L Y M E R  W I T H  L O O S E  

V .  S.  N o v o p a v l o v s k i i  

C O N D U C T I O N  IN 

P A R T I C L E  P A C K I N G  

UDC 536.212 

There  a r e  numerous  engineer ing applicat ions of po lymer s  filled with powders ,  in which the marked  
d i f ference  in conductivity in the components  means  that the contacts  between the f i l le r  pa r t i c les  play a la rge  
pa r t  in the conduction. If the pa r t i c les  a r e  ve ry  c lose ly  packed,  which co r re sponds  to a volume content Pmax '  
all  the pa r t i c l e s  a r e  in contac t ,  and the genera l ized  conductivity of such a s t ruc tu re  amax may be calculated 
f rom published fo rmulas .  The p resen t  study p resen t s  a method of defining the re la t ive  conductivity a/Oma x 
in t e r m s  of the re la t ive  content P /Pmax for  loose packing,  and it incorpora tes  the random mode of contact  
between pa r t i c l e s .  

A s t ruc tu r a l  model  is p roposed  that allows one to ca lcula te  the mean number  of contacts  between p a r t i -  
c les;  the pa r t i c l e s  a re  a s sumed  to have a random distr ibut ion within a l ayer  perpendicu la r  to the flux and also 
it is  a s sumed  that  t he re  a r e  contacts  between pa r t i c l e s  in one l ayer  ( t r ansver se  contacts) and between adjacent  
l aye r s  (longitudinal coutaets  ). The fo rm u l a s  for  the number  of contacts  contain two geomet r i ca l  p a r a m e t e r s  
whose values may  be defined approx imate ly  f rom theore t ica l  calculat ion and then co r r ec t ed  by m e a s u r e m e n t  
of the e l ec t r i ca l  conductivity,  e . g . ,  for  a plas t ic  impregna ted  with graphi te .  The contact conductivity of a 
spec imen  having a re la t ive  length s in the conduction direct ion (the length sca le  is the mean par t ic le  size) is  
defined by the sum of the conductivi t ies  of the continuous contact  chains between the boundary su r f aces .  

F igure  1 shows compute r  ca lcula t ions ,  where  the dashed line r e p r e s e n t s  the curve  given by Dul 'nev ' s  
fo rmula  for  a s t ruc tu re  with in te rpene t ra t ing  components ,  which envisages  that the m a t e r i a l  contains a con, in-  
uous f r a m e w o r k  of contacting p a r t i c l e s .  

~/~ 

o: o,e :/P~x 

Dep. 2903-76, June28,  1976. 
Original  a r t i c le  submit ted  D e c e m b e r  25, 1974. 

Fig. 1. Relat ive  contact  conductivity 
as a function of propor t ion  of f i l l e r  
and spec imen  length. 
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O B S E R V E D  T E M P E R A T U R E  D E P E N D E N C E  O F  

T H E R M O P H Y S I C A L  C H A R A C T E R I S T I C S  F O R  

L A Y E R E D  V A C U U M  I N S U L A T I O N  

N .  P .  P e r s h i n ,  R .  S .  M i k h a l ' c h e n k o ,  
a n d  E .  I .  S h c h i r o v  

UDC 536.21 

L a y e r e d  e v a c u a t e d  i n s u l a t i o n  i s  w ide ly  u sed  in e f f i c i en t  i n s u l a t i o n  of c r y o g e n i c  d e v i c e s ;  an a p p a r a t u s  
and m e t h o d  a r e  d e s c r i b e d  f o r  d e t e r m i n i n g  the  t h e r m a l  c onduc t i v i t y  and s p e c i f i c  hea t  of f l a t  s p e c i m e n s  of such  
i n s u l a t i o n  work ing  o v e r  n a r r o w  t e m p e r a t u r e  r a n g e s  (10-20~ which  m e a n s  tha t  the  t e m p e r a t u r e  d e p e n d e n c e  
of the  t h e r m o p h y s i c a l  p a r a m e t e r s  can  be d e t e r m i n e d .  R e s u l t s  a r e  r e p o r t e d  on the  t h e r r n a l  c o n d u c t i v i t y ,  
t h e r m a l  d i f f u s i v i t y  , and  s p e c i f i c  h e a t  f o r  p o l y e t h y l e n e  t e r e p h t h a l a t e  (PETP)  f i lm  a l u m i n i z e d  on both  s i d e s  (Table  1) 
fo r  the  r a n g e  f r o m  50 to 350~ and a p r e s s u r e  in  the  i n s u l a t i o n  s p a c e  of 3 .10  -4 N / m  e. 

S t a t i o n a r y  and n o n s t a t i o n a r y  t e chn iques  w e r e  u sed  in m e a s u r i n g  the  t h e r m o p h y s i c a l  p a r a m e t e r s ;  the  
e r r o r  of m e a s u r e m e n t  was e v a l u a t e d  with  p a r t i c u l a r  e m p h a s i s  on the e r r o r s  a r i s i n g  f r o m  the  uneven  d i s t r i b u -  
t ion of the  hea t  f lux in the  s p e c i m e n .  

The  da t a  on the  t h e r m a l  conduc t iv i t y  and s p e c i f i c  hea t  m a y  be  r e p r e s e n t e d  as  A 0 +A1T +A2 T2 +A3T3; 
T a b l e  2 g i v e s  the  v a l u e s  of the  c o e f f i c i e n t s  f o r  ~t = f ( T ) .  

The  e m p i r i c a l  r e l a t i o n s h i p  f o r  t y p e s  H and III t a k e s  the  f o r m  

c=--O.06+O,65.10-~T--O.126.10-~T2+ 1.4.10-ST 3 (kJ/kg �9 deg.) 

The  e f f ec t s  of s c r e e n  punching  on the  e f f ec t i ve  d e g r e e  of b l a c k n e s s  and t h e r m a l  conduc t iv i t y  w e r e  a l s o  
e x a m i n e d ;  r e s u l t s  w e r e  r e c o r d e d  on 2t =f (T)  and a = f (T)  fo r  p r e s s u r e s  in the  i n s u l a t e d  s p a c e  f o r  3 .10  .4 to 
1 .33 .10  -1 N/m2~ and an  equa t ion  was d e r i v e d  fo r  X = f ( T ,  P) ,  which  was c o m p a r e d  with  the  m e a s u r e m e n t s .  

R e s u l t s  a l l o w  one to  c a l c u l a t e  the  i n s u l a t i o n  b e h a v i o r  of such  a s y s t e m  u n d e r  a g r e a t  v a r i e t y  of work ing  
c o n d i t i o n s .  

T A B L E  1. 

Type 

C h a r a c t e r i s t i c s  of I n s u l a t i o n  S p e c i m e n s  

Screen material 

I PETP, crumpled, 10 p 

II PETP, corrugated, 8 /~ 
IIl PETP,corrugated, 8/~, 

punched 2 • 10 mm 

I Packing den- 
Packing material sity, 

layers- cm'. 
t 

Glass cloth made of microfiber i 22 
without bonding agent 
~:VTI-7 glass cloth t 16 
~VTI-7 glass cloth i 17 

] 

T A B L E  2. Coe f f i c i en t s  and  P o l y n o m i a l s  f o r  X = f (T ) .  Vacuum 3 �9 10 -4 
N / m  2 

Type Ao A, A2 A3 

I 
II 

Ill 

0 
0 
0,004 

0,154.10 -2 
--0.035.10 -~- 

0,280.10 --~ 

--0,069.10 -4 
0,122.10 -4 

--0,12 .10 -4 

0,0409.10 -6 
0,0074-10 -6 
0,062 �9 10 -6 

Dep .  3323-76 ,  Augus t  9, 1976. 
O r i g i n a l  a r t i c l e  s u b m i t t e d  A p r i l  5, 1976. 
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M A T H E M A T I C A L  M O D E L I N G  O F  T H E  I N T E R A C T I O N  OF A 

S T R E A M  OF V I S C O U S  I N C O M P R E S S I B L E  L I Q U I D  W I T H  A 

R O U G H  W A L L  

L .  V .  P o l u y a n o v  a n d  R .  I .  A y u k a e v  UDC 531.15:539.371 

One of the effective methods of intensification of p rocesses  o f~ea~and  mass  exchange between a liquid 
s t r eam and a solid surface  is the regulation of the mic rogeomet ry  of the lat ter .  For  example,  the milling 
of project ions o r  the mounting of diaphragms on the surfaces  of heat-exchange pipes allows one to increase  
the heat exchange (when Re >> 1) by 1.5-2.5 t imes  [1, 2]; the use of grains with a developed mic rogeomet ry  in 
g ranu la r  f i l ters  in the separat ion of low-concentrat ion suspensions increases  the yield (when Re ~ 1) of the 
installations by 1.5-2.5 t imes [3]. The clar if icat ion of the dependence of the s t ruc ture  of the s t r eam on the 
mic rogeomet ry  of the surface over  which it flows is of in te res t  in this connection. Experimental  methods 
prevai l  in the solution of such problems because of difficulties of a mathemat ica l  nature.  In the report  being 
published an attempt is made to study this problem analytically hrith the aim of obtaining some general ized 
es t imates .  

The model  study of the effect of the mic rogeomet ry  of the surface on the s t ruc ture  of a s t r eam of incom- 
press ib le  viscous liquid flowing over  it was conducted on the basis of the solution of the problem of Couette 
flow with a s ta t ionary corrugated  wall. A general ized pa rame te r  --  the wave number -- is taken as the cha r -  
ac te r i s t ic  of the mic rogeomet ry  by analogy with [4]. The flow is understood as plane and steady while the c o r -  
rugation is considered as a smal l  dis turbance of the surface  over  which the flow occurs .  The principal  condi- 
tions of cor respondence  between rea l  flow and the model under considerat ion a re  laminar  attached flow over 
the surface  and smal lness  of the amplitude of the disturbance in compar ison  with the distance between the walls. 
The solution is given for  the limiting modes of flow of Re << 1 and Re >> 1 and some general izat ions are  made 
to modes of flow with the joint manifestat ion of viscous and iner t ia l  effects (the most  inconvenient for  analytical  
studies}. 

1. 
2. 
3. 

4. 

L I T E R A T U R E  C I T E D  

N. M. Galin, Teor .  Osn. Khim. Tekhnol . ,  4, No. 3 (1970). 
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R. I. Ayukaev, Author ' s  Abst rac t  of Candidate 's  Disser ta t ion ,  Construction Engineering Institute, 
Gor 'ki i  (1969}. 
L. V. Poluyanov, Izv. Sibirsk.  Otd. Akad. Nauk SSSR, Ser. Tekh. Nauk, No. 3, Par t  1, 33 (1971}; 
No. 8, Pa r t  2, 75 (1972}. 

Dep. 2905-76, July 5, 1976, 
Original  ar t ic le  submitted March 18, 1976. 

JET MODEL OF FLUIDIZATION AND ITS 

ENGINEERING APPLICATION 

N.  A.  S h a k h o v a *  UDC532.517.4 

The jet model ,  proposed by the author in 1965 on the basis of a theoret ical  and experimental  study of 
turbulent gas jets discharging into a fluidized bed, t rea ts  the motion of the fluidizing agent f rom a ga s -d i s t r i -  
bution grid of any construct ion in the form of jets which develop as in a homogeneous medium ofd i f f e ren tp rop-  
er t ies  with par t ia l  or  total  degeneration of the jet flow into fil tration flow. With the discharge of a fluidizing 
agent with a density less than the bed density the jet flow through the bed degenerates  into bubble motion. Be- 
cause of the disruption of the continuity of flowthe p r e s s u r e  in the jet tongues i nc reases ,  and when the separat ion 

* Deceased.  
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pres su re  is reached,  when the separat ion force  exceeds the force of res i s tance ,  the jet breaks up and 
tongue-bubbles  tear  off. 

The studies car r ied  out over  the last decade by the author and colleagues on the hydrodynamics and heat 
exchange in jets and in a fluidized bed made it possible to supplement and develop the theoret ical  foundations 
of the jet model of fluidization and its engineering application. 

On the basis of the jet model one can explain the origin of the bubbles and the p ressu re  pulsation in a 
fluidized bed, the nature of heat and mass  t r ans fe r  in a fluidized bed, and the effect of the bed height and the 
velocity of d ischarge f rom the openings of the gas-dis t r ibut ion grids on the amplitude and frequency of the 
pulsations and the intensity of heat and mass  exchange. 

The jet model allows one to make a number of recommendat ions:  

1) to design and construct  gas-dis t r ibut ion grids in intimate connection with the p rocesses  of heat and 
mass t ransfer ;  

2) to caiculate the p rocesses  of heat and mass  t rans fe r  separate ly  in three established zones: the tongue 
zone, the bubble development zone, and the main volume of the bed; 

3) to decrease  the amplitude of the p res su re  pulsations,  the dynamic entrainment ,  and the oscillations 
in bed height through the creat ion of a tongue zone only in the fluidized bed or  through art i f icial ly 
introduced powerful gas jets; 

4) to choose the blowers and conduct the s trength calculations of apparatus containing a nonuniform 
fluidized bed with allowance for  the p res su re  pulsations which develop and the rocking of the appara-  
tus which resul ts  f rom them. 

Dep. 3329-76, February  20, 1976. 
Original ar t ic le  submitted January  22, 1976. 

A N A L Y T I C A L  S O L U T I O N  OF T H E  P R O B L E M  O F  T H E  

A C C U R A C Y  IN R E C O R D I N G  T H E  T E M P E R A T U R E  P R O F I L E  

OF  A H E A T E D  L A Y E R  OF C O N D E N S E D  S U B S T A N C E  

W I T H  A F L A T  P R O B E  

Y u .  V.  C h e r n o v  UDC 536.5 

When the tempera ture  field of a heated layer  of condensed substance is measured  with a flat probe it is 
distorted because of the difference between the thermophysical  charac te r i s t i cs  of the probe and the mate r ia l  
being studied. This leads to a methodological  measurement  e r r o r  which can prove to be very considerable 
in a region of large gradients of the original t empera ture  profile.  

The methodological e r r o r  is studied on the assumption that the rate of motion of the boundary is constant 
and the thermophysica l  charac te r i s t i cs  do not depend on the tempera ture .  These assumptions ref lect  the case ,  
which is of principal  pract ical  in teres t ,  when the disturbing effect of the probe is sma l l  and the tempera ture  
dependence of the thermophysica l  charac te r i s t i cs  can be allowed for in the solution obtained by calculating for  
the expected ext reme values of the cha rac te r i s t i c s .  

With ~z >> ~ the following calculating equations are  obtained for  the limiting values of the relat ive t emper -  
ature measured  by the probe,  which are  real ized with a constant t empera ture  at the moving boundary equal to 
its initial value (when the probe lies at a large distance f rom it) and a constant heat flux density at the moving 
boundary also equal to its value at the initial t ime: 

u 
exp - -  

~ r f l i n ~  a 

a g a 
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U 
exp - -  

~ m a x  ~ a , 
U U U 

s h - -  ~+ch - -  ~+ x c h - -  
a a a 

where  u is  the ve loc i ty ;  a = X/eT is t h e  coef f ic ien t  of t h e r m a l  dif fusivi ty  of the m a t e r i a l  unde r  s tudy;  ~ is  the 
d i s t ance  f r o m  the f ron t  s u r f a c e  of the p robe  to the  moving  boundary ;  ~ = (u/X)Czyz5 z is  a d i m e n s i o n l e s s  p a r a m -  
m e t e r  of  the probe~ and c z ,  Tz,  and 5z a r e  the  heat  c apac i t y ,  dens i ty ,  and th i ckness  of  the p robe .  Equat ions  

m 

f o r  T m i n  and T m a  x with f ini te  coef f ic ien t s  of t h e r m a l  conduct iv i ty  and equat ions  fo r  the  t e m p e r a t u r e  f ield a r e  
a l so  obta ined  in the a r t i c l e .  

Graphs  of  T = f [ u / a ) ~ ]  f o r  s e v e r a l  va lues  of the p robe  p a r a m e t e r s  ~t a r e  p r e s e n t e d  fo r  the case  of X z >> X 
which  make  it  pos s ib l e  to  d e t e r m i n e  the p robe  th i ckness  on the bas i s  of  the a l lowable  m e a s u r e m e n t  e r r o r .  The  
g r aphs  can  be use fu l  f o r  e s t ima t ing  ca lcu la t ions  and in the  c a s e  when the law of mot ion  of the  moving  boundary  
as  a funct ion of the s u r f a c e  t e m p e r a t u r e  is unknown. 

Dep.  2900-76 ,  Ju ly  2,  1976. 
Or ig ina l  a r t i c l e  submi t t ed  Oc tobe r  20, 1975. 

EXPERIMENTAL STUDY OF CONVECTIVE HEAT 

EXCHANGE IN WINDOWS WITH SUN PROTECTION 

E. S. Gul'karov and E. T. Artykpaev UDC 536.24 

P r o c e s s e s  of convec t ive  heat  exchange  in window s t r u c t u r e s  with two va r i an t s  of sun p ro t ec t ion  --  louver  
e l emen t s  in the space  be tween panes  and outs ide  in f ron t  of the g laz ing  - -  a r e  s tudied on a l a b o r a t o r y  i n s t a l l a -  
t ion  us ing  an i n t e r f e r o m e t e r .  

The  t h e r m a l  and a i r  r e g i m e s  in the  mode l  of the l ight opening were  imi ta t ed  by con tac t  e l e c t r i c a l  heat ing 
of the e l e m e n t s  of the opening and the  use  of a wind tunnel .  Visua l  obse rva t ion  and photography  were  conducted 
o v e r  the  en t i r e  c r o s s  s ec t ion  of the mode l  of the l ight  opening with subsequen t  combin ing  of the i n t e r f e r o g r a m s  
obta ined  to e s t i m a t e  the o v e r a l l  pa t t e rn  of  the  t e m p e r a t u r e  field in the  working  zone and the hyd rodynamics  of 
the p r o c e s s .  The  r e l a t i onsh ip  between the  g e o m e t r i c a l ,  h y d r o d y n a m i c ,  and o t h e r  p a r a m e t e r s  de te rmin ing  the 
in tens i ty  of heat  exchange  was  e s t ab l i shed  on the bas i s  of an ana lys i s  of  the  expe r imen ta l  da ta .  As  a r e s u l t ,  
g e n e r a l i z e d  funct ions a r e  obta ined (Table 1) fo r  ca lcu la t ions  of the a v e r a g e  d imens ion l e s s  coef f ic ien ts  of  heat  
exchange  at  the s u r f a c e  e l e m e n t s  of a l ight opening with s e v e r a l  t h e r m a l - a i r  r e g i m e s  c h a r a c t e r i s t i c  fo r  the 
condi t ions  of  explo i ta t ion  of  t r a n s p a r e n t  b a r r i e r s  in r eg ions  with a d r y  hot c l ima te .  The e m p i r i c a l  coef f ic ien ts  
c l ,  c 2, and c 3 en te r ing  into the equat ions  a r e  r e p r e s e n t e d  in the f o r m  of g raph ic  funct ions (Fig. 1) of the f a c -  
t o r s  d e t e r m i n i n g  the h e a t - e x c h a n g e  p r o c e s s  (the r e g i m e  and the g e o m e t r y  of the sys t em) .  

T A B L E  1. E x p e r i m e n t a l  Condit ions and Resu l t s  of Studies of Con-  
vec t ive  Heat Exchange  in Window Openings Covered  with Sun P r o -  
t ec t ion  

A r r a n g e m e n t  of s u n -  . , 1 Re~irne in mooet of protection louvers in , o 
profile of light open-I light opening 

In space between 
panes 

Outside infront of 
glazing 

Closed interlayer 

iVentilated interlayer 

I Blowing by air stream 
(,wAnd pressure) 

H e a t - e x -  
Ichange sur- 
face m test 
region 

I 
1 Glass 
t Louvers 

Glass 
Louvers 

Glass 
L o u v e r s  

Criterial dependence 

~ 0.183 (Gr >,i Pr) 1/a 
Nu ----- (0.29 + 0.32p) U, 

;.~ (Gr ;,t Pr) ~ 

N--~-= 6.07/: R e  ~ 1 7 6  

N~ = - 0.76 
C 1 l~e n o r a  

N-u = c2 Re 0"60 
N-u-: c3 Re I/2 

n o r a  
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1. E m p i r i c a l  coefficients  el ,  c2, and c 3 as functions 
of p, ~,  and b l /h .  

By the exper imen t s  with an air t ight  i n t e r l aye r  it  was es tabl ished that the p roce s s  of heat exchange at the 
g lass  su r faces  intensif ies  with an i nc rea se  in p with the o ther  conditions being equal.  Variat ion in the simple~: 
p does not have an impor tan t  effect  on convect ive heat exchange during a i r  f i l t ra t ion in the window space .  

A depar tu re  f rom fronta l  blowing on the model  of an opening with outside louvers  leads to a dec rea se  in 
the intensi ty of heat t r a n s f e r  f rom the su r faces  of the e lements  of the light opening. 

N O T A T I O N  

b, louver  width, m; h, dis tance between louvers ,  m; ~, angle of inclination of louver  to hor izontal ,  deg; 
p = b cos ~ / h ,  cha r ac t e r i s t i c  of g e o m e t r y  of sun protect ion;  c and n, empi r i ca l  coeff icients;  ~u ,  averaged  
Nusse l t  number ;  Gr ,  Grashof  number;  P r ,  Prandt l  number ;  Re = G I / v T F ,  Reynolds number ;  G, a i r  flow ra te  
in space  between panes ,  kg / sec ;  l, width of a i r  i n t e r l a y e r ,  m; v, ldnemat ic  v i scos i ty  of a i r ,  m2/sec ;  ~,, a i r  
densi ty ,  kg/m3; F,  c r o s s - s e c t i o n a l  a r e a  of a i r  i n t e r l aye r ,  m2; Renom, nominal  Reynolds number;  ~, angle 
of a t tack ,  deg. 

Dep. 2901-76, July 1, 1976. 
Original  a r t i c l e  submit ted Apri l  18, 1975. 

C O M P A R A T I V E  A N A L Y S I S  OF C A L C U L A T I N G  F U N C T I O N S  

F O R  T H E  P R O C E S S  O F  C O O L I N G  O F  C H A N N E L S  W I T H  A 

G A S  S T R E A M  

V .  G .  P r o n ' k o ,  G .  M.  L e o n o v a ,  
a n d  A .  I .  R a i g o r o d s k i i  

UDC 536.244 

The analyt ical  solutions of Anzelius,  Schumann, and Nusse l t  for  the p roces s  of cooling of long channels 
with gas  a r e  analyzed.  The appl icat ion of these  solutions to the conditions of p rob l ems  of cooling cryogenic  
equipment  without fu r the r  t r ans fo rma t ions  is inadvisable  for  the following r ea sons .  In the analyt ical  solutions 
the heat capaci ty  of the spec imen  m a t e r i a l  was taken as constant ,  whereas  in cooling by cryogenic  coolants 
the heat capaci ty  va r i e s  quite cons iderably .  The equations descr ib ing  the t e m p e r a t u r e  var ia t ion  of the object  
being cooled mus t  be solved jointly with the compl ica ted  equations descr ib ing  the connection between the mos t  
impor tan t  p a r a m e t e r s  of the r e f r i ge ra t i ng  instal la t ions:  p r i m a r i l y  the coolant flow r a t e ,  its t e m p e r a t u r e  at the 
inlet  to the object  being cooled,  etc.  In this connection it  becomes  n e c e s s a r y  to s impl i fy  the fo rm of the equa-  
t ions desc r ib ing  the t e m p e r a t u r e  var ia t ion  of the object  being cooled.  

In the a r t i c l e  the analyt ical  solutions a r e  compared  with exper imenta l  r e su l t s  on the cooling of channels 
by gaseous  ni t rogen and hel ium. It was shown by an analys is  of the c lass ica l  solutions and by the exper imen ta l  
r e su l t s  that  when St(l/d) >> 1 and Bi << 1 the intensi ty  of heat t r a n s f e r  does not affect  the nature  of the var ia t ion  
in the t e m p e r a t u r e s  of the object and the coolant ,  the only complex independent va r i ab les  being the ra t ios  of 
heat capaci t ies  of the body and the gas  and the homoehronici ty  number .  Exponential  functions obtained by the 
author ,  which a r e  s imple  in f o r m  and which approx imate  the exper imen ta l  data  with an accuracy  of =L15%, are  
r ecommended  in the a r t i c l e .  It i s  shown that  r e su l t s  calculated by the Schumann solution using an ave rage  
value of the heat capaci ty  co r r e spond  cons iderably  worse  with the exper imenta l  data than resu l t s  calculated 
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from exponential  functions using values of the heat capacity corresponding to different sect ions  of the t e m p e r -  
ature variation.  

D e p .  2902-76~  J u n e  14 ,  1976 .  
O r i g i n a l  a r t i c l e  s u b m i t t e d  D e c e m b e r  9,  1975 .  

C O M P U T E R  CALCULATION OF RADIANT HEAT EXCHANGE 

IN AN AXISYMMETRIC SYSTEM OF TWO BODIES ON THE 

EXAMPLE OF A CAVITY BOUNDED BY THE SURFACES OF 

A CONE AND A CYLINDER 

S .  P .  R u s i n  UDC 536.3  

The problem is  analyzed in the same formulation as in [1]. In contrast  to [1, 2],  both bodies can have 
a nonplane shape.  The effective emiss iv i ty  eef(~) of the cavity was sought (Fig. 1; the geometrical  dimensions 
are normalized to the radius of the cavity opening).  The values of eef(~) were determined from the system of 
two integral  equations ( la) ,  (lb) by the method of i terations (the notation here is  analogous to that of [1]): 

~IL ~L 
eef (no) = (e (}1o) q- R (rio) ( S (eef 01) [~ (~1) - -  eef(~lo)) K~ blo, q) d,l + ,[ (eef([) to ([) 

o o 

--  eef(~L ) [* (~L)) K~ (llo, ~) d~q-eef(~L ) [2 (~L) q~ (rh, F,)) ) / ( I - -R trio ) (p~ (rio, F1)); (la) 

E L 

eef(~o) = (e (~Jo) -[- R (So) • ( .! (eef(~) f-" (~) -- eef (~o)) Kz (~o, ~) 
o 

xd~+  .f (Sef (rl) [4 (rl) - -  eef(q=0) f4 (q=0)) K4 (~o, rl) dq--eef(q=0) :a (rl=O)~4 (to, F1))I/(I--R (~o) q,.~ (.~o, F:}}; 
o 

fib) 

--Eo (~)/Eo ~o), h %)--Eo (q)/Eo (~o). fx(~l)=Eo(rl)/Eo(rlo); [-z(~)=Zo(~)/Eo(qoJ; f3(~)-- ~ '*'" 

S o m e  of  t h e  data  f o r  a = 0 a r e  s u m m a r i z e d  in  T a b l e  1.  V a l u e s  of  q E a r e  p r e s e n t e d  t h e r e  a l s o  ( q E i s  the  r a t i o  
of  t h e  h e a t  l o s s e s  f r o m  t h e  g i v e n  c a v i t y  (gray  m o d e l )  to  t h e  h e a t  l o s s e s  f r o m  an a b s o l u t e l y  b l a c k  body  at the  

T A B L E  1. D e p e n d e n c e  of  eef  and 
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Fig. I. Diagram of cavity. 

same temperature) .  For  0 = 90 ~ our  data agree  with those of [3, 4]. The resul ts  of calculations for noniso- 
thermal  cavit ies (~ = 0.65 p) are  also presented.  As a rule,  the functions eef(~) have a minimum within [0, ~L]- 

The numer ica l  resul ts  obtained can be used in radiant py romet ry ,  in modeling porous mater ia ls  by a 
sys tem of cavi t ies ,  and in creat ing art i f icial  emitting sur faces ,  and the calculating algori thm i tself  can be used 
for calculations of thermal  aggregates  and s t ruc tura l  elements having axial symmet ry .  

1, 

2. 
3. 
4. 
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C A L C U L A T I O N  O F  R A D I A N T  H E A T  E X C H A N G E  IN AN 

I S O T H E R M A L  S Y S T E M  O F  S E L E C T I V E L Y  E M I T T I N G  

S O L I D  B O D I E S  

S.  P .  R u s i n  UDC 536.3 

When the radiation wavelength ~, the field of tempera tures  T, and the field of the optical pa ramete r s  e 
and R are  given the calculation of the radiant heat exchange is connected with the solution of an integral  equa- 
tion of the type (diffuse emiss ion and reflection) 

eef(J,, M) E o (~., M) = e (~,, M) E o ('~, M) " R  (~t, M) ~" %f(;% N) Eo (~, N) d~ (M, N), 
(F) 

M, N ~ F  

(1) 

(the notation is the same as that in [1]). 

Numer ica l  integration over  the spec t rum is ca r r i ed  out af ter  the calculation of eel(k, M). 

It is proposed to approximate the emiss ion spec t rum of solid bodies within a spect ra l  band AX by a l inear 
dependence on ~ (by a polynomial in the general  case).  The radiation charac te r i s t i cs  calculated on a computer  
by the proposed method and in accordance  with a "gray" model were compared for  an i so thermal  cavity [1] of 
tungsten. The data coincided within limits of 5%. The agreement  obtained is analyzed from the position of (1). 
Assuming that eef(k) is a l inear function of ~ and using the theorem of the mean value of an integral ,  af ter  in- 
tegrat ion of (1) in the interval  A~ we have 

eef('~ av, M) = (e~ (M) ~- S eef(~,av, N) (r (N)/T (M)) 4 ~ (M, N) d T (M, N))/AF (M), (2) 
(F) 

.i ~Eo (~, M) d~/S Eo (z, M)dz, )~av (2a) 
(~.) (a~.) 

Xav= .,~ ),R ()~. M) E o (~., N) d~./ S R (;~, M) Eo 0~, N) d~., (2b) 
(a},) (a~,) 
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ez (M) = S ~ (~'' M) E o (~,, M) d~l((~oT 4 (M)), (2C) 
(A~) 

~xEo (~, M) d~,/(ooT �9 (m)), (2d) AF (M) =( } 

R (M, N) -~ S R (k, M) Eo (~,, N) d~/((~oT a (N)), (2e) 
{a~,) 

and since in our  case  

(3) 

the s y s t e m  is  quas imonochromat ic .  M o r e o v e r ,  the s y s t e m  is i so the rma l ,  and consequently R(M, N) = R Z (M) = 
1 - -  eE(M). When AF ~ 1 the quas imonochromat ic  s y s t e m  coincides with a "gray"  model .  It  is jus t  this which 
explains the c loseness  of the "gray"  approximat ion  to the r e a l  emis s ion  f rom a cavity in our  case .  F o r  a non-  
i s o t h e r m a l  s y s t e m  R(M, N) ~ RZ (M)and one mus t  use  (2} for  the ca lcula t ions .  Using the i te ra t ion  method one 
can choose the quantity Ah such that  Eq. (3) is  sa t i s f ied  with the r equ i red  a c c u r a c y ,  i .  e . ,  the s y s t e m  is  quas i -  
monochromat i c  with the requ i red  accu racy .  

L I T E R A T U R E  C I T E D  

1. S . P .  Rusin ,  I n z h . - F i z .  Z h . ,  2._6.6 , No. 2, 208 {1974). 

Dep. 3324-76, Sep tember  1, 1976. 
Original  a r t i c l e  submi t ted  May 21, 1976. 

T H I C K N E S S  O P T I M I Z A T I O N  F O R  T H E R M A L  

I N S U L A T I O N  ON A P I P E L I N E  

M.  Y u n u s o v  UDC 519.9 

If a pipeline is to c a r r y  m a t e r i a l s  at  t e m p e r a t u r e s  above or  below the soi l  t e m p e r a t u r e ,  the t h e r m a l  
conduction in the soi l  may  be accompanied  by changes in phase  s ta te  (for ins tance ,  thawing). 

Any change in the phys ica l  s ta te  of a soi l  usual ly resu l t s  in d is tor t ion  of the pipel ine ,  but this can be 
reduced o r  e l iminated by appropr i a t e  insulat ion {provided this is adequate).  Here  we consider  thickness  op-  
t imiza t ion  for  such  insulat ion for  a pipeline ca r ry ing  products  at  a t e m p e r a t u r e  above that  of the f rozen soil .  

The t e m p e r a t u r e  dis t r ibut ion in the soi l  is de te rmined  by solving the Stefan 's  p rob lem [1, 2], while the 
t e m p e r a t u r e  of the product  is der ived  f r o m  another  fo rmula  [2, 3]. The opt imal i ty  c r i t e r ion  is a functional 
dependent on the deviat ion of the radius  of the phase - t r ans i t i on  boundary in the soi l  f rom the p e r m i s s i b l e  value,  
which i t se l f  is  de te rmined  f rom s t reng th  cons idera t ions .  

Phys ica l ly ,  this  means  that  the thawed depth mus t  lie within a ce r ta in  range subject  to a safety marg in  
on the amount  of insulat ion and speci f ied  m a x i m u m  and min imum th icknesses  for  the l a t t e r .  

N u m e r i c a l  solution of a boundary-va lue  p rob lem of Stefan type is poss ib le  via an unconditionally s table  
scheme  prev ious ly  p re sen ted  [1-3]. In this method,  a nonl inear  s y s t e m  of a lgebra ic  equations is der ived ,  
which is  then solved by i t e ra t ive  fit t ing [4]. 

The op t imum insulat ion th ickness  is de te rmined  numer ica l ly  by success ive  approximat ions ;  it i s  proved 
tha t  the i t e ra t ion  converges .  The method is i l lus t ra ted  by calculat ing the opt imum thickness  for  insulat ion on 
pipel ines  in f rozen  soi ls  opera t ing under  var ious  condit ions,  fo r  which purpose  a BI~SM-6 compute r  was used.  

The r e su l t s  show that  opt imum thickness  for  g l a s s - f i b e r  insulat ion is 9.5-10.5 em for  the length up to 
20 km,  7.5-8.5 cm for  the length between 20 and 40 k in ,  6.5 cm for  40-50 kin, 5 cm for  50-60 km,  3.5-4 cm 
for  60-80 kin, and only 2.5 cm for  the r e m a i n d e r .  These  resu l t s  can be used in s t rength  and s tabi l i ty  ca lcu la -  
t ions for  pipel ines .  
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N O N I D E A L  T H E R M A L  C O N T A C T  B E T W E E N  P L A T E S  

U N D E R  N O N S T A T I O N A R Y  T H E R M A L  C O N D I T I O N S  

Y u .  M.  K o l y a n o  a n d  O.  F .  G i r n y a k  UDC 539.377:537.47 

The conditions for  general ized nonideal thermal  contact between plates via a thin intermediate  layer  are  
derived; the sys tem contains no heat sou rces ,  but there  is heat t r ans fe r  to the environment at the sides in ac-  
cordance with a general ized form of Newton's law. It is assumed that the tempera tures  and heating ra tes  for 
the elements are  initially zero .  

The equations of thermal  conduction for the intermediate  layer  are  averaged over  the width on the basis 
of l inear variat ion of the tempera ture  within the layer ,  and conditions a re  then formulated for  general ized 
nonideal contact; if the sys tem is symmet r i ca l  about the median plane, these conditions take the form 

Ao Os ~ 2 Oz T }  - d 2  T ]J J 

A o 

whe re 

0 2 (TI--T2) 

c~s 2 
@6 dl bltPl @ -On--n ] +dz !bzq;~- o T ) j -  R---~- (Tl--r2) --210 Ao (Tl--rz)-- 2Ao~e@ Co 0 (T1--T2) 2 at - =o, 

z OTi (s, n, ~) z(i) 
~ (s, n. T) = .f On e r d~; 

0 

T(D _ .~(0) A -~o) 
b i  ~ _ r - r  ; d i =  - -  ; ( i = 1 ,  2), 

and l o = 1 + r r  (~ 0/0T, Tr(i) (i = 0, 1, 2) are  the relaxation t imes for the heat fluxes in the plates and layer;  
A0 = 46hX0, Co = 45hc(v ~ A0 = 2ha0 are  the reduced thermal  conductivity, specific heat,  and heat t r ans fe r  f rom 
the surfaces  z = ~6 ,  while R h = h/Xo6 is the thermal  res is tance  of the layer;  T1, T2, de are  the mean t e m p e r -  
atures  of the plates and environment;  and T is the t ime. 

Par t i cu la r  cases  of these conditions a re  d iscussed.  

Dep. 3319-76, August 12, 1976. 
Original ar t ic le  submitted Apri l  22, 1976. 
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C A L C U L A T I O N  O F  T H E  T E M P E R A T U R E  IN 

V O L U M E  W I T H  D I S T R I B U T E D  H E A T  S I N K S  

I N N E R  S U R F A C E  

R .  K .  N i k u l ' s h i n ,  E .  F .  P e t r i m a n ,  
a n d  A .  V .  K o n t s e v  

A C L O S E D  

ON T H E  

UDC 536.2.01 

A method is given for  de te rmin ing  the nonsta t ionary  t e m p e r a t u r e  o f  the a i r  in a c losed insulated volume 
having un i formly  d is t r ibuted  heat  s inks on the in te rna l  s u r f a c e ,  which a r e  provided by r e f r i ge ra t i on  or  by a 
c ryos ta t .  

It is  a l so  a s s u m e d  that  the heat  flux is one-d imens iona l  and that Bi > I0 ,  which resu l t s  in boundary 
conditions of the f i r s t  kind, with the t e m p e r a t u r e  uni form over  the in te rna l  su r face  of the chamber  (the evap-  
o r a t o r  chamber}, the t e m p e r a t u r e  b e i n g t h a t  of the coolant t 0, while the a i r  t e m p e r a t u r e  tch in the ch amb e r  
is  constant ,  as  a r e  the h e a t - t r a n s f e r  f ac to r  a and the output P of the heat sou rces .  

The a i r  t e m p e r a t u r e  within the c h a m b e r  is  defined f r o m  the hea t -ba lance  equation 

o r  

where  

~ Gici dtch (x) =P--  ~F Itch (7 ) ,  to (7)1 (1) 
dv 

i 

do (T) 
dr + b~ (x) = �9 (x), (2) 

aF aFOo ( x )  - -  P 
0 =  ; O ( 7 ) - -  (3) 

ZG~c, Z~ ,c~  
i i 

The evapo ra to r  t e m p e r a t u r e  in the r e f r i g e r a t o r  v a r i e s  exponentially:  

e--rn O 0 (r) = O0max (1--  ~ ), (4) 

where  m 0 is  the cooling ra t e  and | is the m a x i m u m  t e m p e r a t u r e  d i f ference  occurr ing  when the machine 
has reached  a s teady s ta te .  

The solution to (2) for  o:(r) T =0 = 0 subject  to (4) is 

1 [~FOomax--P (l__e_b,c)__ otFOomax. ] (~) _ _  ( e - m o ' ~  _ _  e - b  x ) . o) 
~ Gici b o -- m o 

Also,  O0max is  d e t e r m i n e d  by solving the s y s t e m  for  the s teady s tate:  

(5) 

by specifying the t i m e  r c such that  

Ore = f (0o), 

Qre = ~ i n  FavO~ + P' 

e! , r  = r.Oc, 

and then (5) g ives  m 0. 

The cooling s ou rce  sa t i s f i es  (7) if  the following inequali ty is  obeyed: 

Q're(X)>~ GinCin T q-GsCs d'r d'r 
i 

where u(r) i s  the t e m p e r a t u r e  of the insulat ion averaged  over  the volume: 

4m o 
u ( T ) = O 0 m a x [ 0 , 5 ( 1 - -  e ..... "~)-~ ~ Z(e-m*'r'-e-Ahv)(2~l)~(A~mo) ]" 

k=l 

(6) 

(7) 

(8) 

(9) 
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When | (r), cO (r), and u (~-) have been determined,  
check the resul t  for  m 0" 

Dep. 2904-76, July 5, 1976. 
Original ar t ic le  submitted February  6, 1976. 

(8) is solved throughout the range 0 _<_< w (r) _< w c in order to 

G E N E R A L  M E T H O D S  OF D E T E R M I N I N G  C O N T A C T  

H E A T  T R A N S F E R  F O R  A R O D  S Y S T E M  

V.  G.  P i d o d n y a  a n d  V.  M. K h o r o l ' s k i i  UDC 536.21 

Consider a sys tem composed of n bounded rods 0 _< x _< ai having a common contact region x = 0 (inter- 
mediate layer) ,  in which specified amount of heat Q(t) is generated.  The intermediate  layer  has a t empera tu re  
T(t), and a liquid is pumped through this,  which acquires  the tempera ture  of the contact region exactly.  

The following sys tem of equations descr ibes  the heat propagation in each rod on the basis of the heat 
t r ans f e r  on the side faces:  

00~ 020~ cox = ~ - ~ ( 0 ~ - ~ ) + - ~ -  ,~, 0<~<~, t>0.  (1) 
~ O t  

The boundary conditions take the form 

O~)i x=o OOi ! --~ ' i  ---~'~- i=q~(t ) ,  ~,i --~x Ix=a = q ~ ( t ) ,  Oilt=O=q~i(x), TI t=o=To ,  (2) 

where qi (t) a re  unknown heat fluxes and q~ (t) a re  known ones. 

The temperatxwe distributions in the contact a reas  sat isfy the conditions for  ideal thermal  contact:  

Oi[x=O = r (t), i = l ,  2 . . . . .  n. (3) 

It is also assumed that the following heat-balance equation applies for  the contact zone: 

dT (t) 
Q (0 = S~q~ (t) + rnT (t) + m o  dt (4) 

The theory  of Green ' s  functions is used to reduce the solution to (1) and (2) to that of a sys tem of inte-  
g ra l  equations of Vol ter ra  type containing the weak singulari ty 

t 
0~ (x; t) = ~ , 0~ (T) ~ (x; o; t--~) de + fi (x; t), (5) 

0 

where F i (x; t) a re  known functions and Gi (x; ~; t) are  GreenVs functions that satisfy (1) and zero  boundary con-  
ditions of the second kind. 

An operational  method is given for  solving (4) and (5), which gives a genera l  solution in t e r m s  of t r a n s -  
fo rms .  

An approximate method is also given, which involves t ime averaging; the heat t r ans fe r  is considered for 
a specified t ime interval  (0, t), while the heat fluxes qi(t) a re  averaged over  this period.  This averaging 
method resul ts  in a sys tem of a lgebraic  equations. Finally,  a method is presented for  solving (4) and (5) by 
approximating qi(t) in power- law form.  This reduces the solution of (4) and (5) to that of algebraic  equations 
of t r iangular  type,  which a re  simple to solve numerical ly .  

NOTATION 

r Xi, hi, thermal diffusivi.ty, thermal conductivity, and heat-transfer coefficient; u] = hiPi/)kiSi, coeffi- 
cients for heat transfer from the rod surfaces; Si, Pi, cross-sectional area and perimeter of rod i; 
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m, the rmal  capacity of cooling liquid passed through contact space in unit t ime; ~i = r t), given functions 
descr ibing the hea t - source  distr ibution in the rods;  6i = 5i {x; t), t empera tures  of the external  media.  

Dep. 3326-76, July 5, 1976. 
Original  ar t ic le  submitted December  17, 1975. 

A N A L Y S I S  O F  T H E  S O L U T I O N S  OF  S O M E  N O N L I N E A R  

P R O B L E M S  IN N O N S T A T I O N A R Y  H E A T  C O N D U C T I O N  

N.  M.  T s i r e l ' m a n  UDC536.21 

' 0  0 0 

By means of the substitution ~ (0) = ,  f (0) , ~ - ~  dz dx, the heat-conduction equation for an unbounded 
0 0 0 

plate with a relat ive heat-conduction coefficient f (O) and a volumetr ic  heat capacity ~(0) which depend on the 
t empera tu re  0 was reduced to the form 

a8 a 2 
(o), o < ~ < i ,  ~ > o  ( i )  

Ow &l 2 

and was solved by a f ini te-difference method using an implicit  absolutely convergent Crank--Nicholson scheme 
with the boundary conditions 

o (o, ~) = o, o < ~1 ~ 1, (2)  

0(1.3)=I ,  T>0, (3) 

ana--~176 n=o= o. (4) 

At the initial instant  of t ime we used at the boundary of the region the conjunction function 

{, 2 0(t, ~)= -- % / ,  O ~ T o ,  

1, T > T  0 

and the t ime step was taken to be T O = 0.0001. In addition to calculating 0 (~, T), we set up a subprogram 
called "Interpretat ion" which ca r r i ed  out on each t ime layer  a sea rch  for  values of the tempera ture  0 equal 
to 0.1, 0 . 2 , . . . ,  0.9 o r  the points c loses t  to them in the points of the space ~ = 0.05, 0.10, 0.15 . . . .  , 0.95. 

The selected method of solution was checked with a control  problem [1] on a tempera ture  wave in an un- 
bounded plate with f (O) = 0.5 02 and r = 1, which has an analytic solution, and was then applied to the follow- 

ing cases :  1 
a) f ( O ) = l @ a O ;  b) f (O)=exp(aO) ;  c) f ( O ) = ( l _ a O )  - - - ~ Y  for ( p ( O ) = l .  

The resul ts  obtained enable us to conclude that the numerical  calculation of t empera ture  fields in the 
per iphera l  par ts  of bounded bodies may be replaced with the solution of a nonlinear problem for an "identical" 
half-space (for boundary conditions of the f i r s t  kind), when it is possible to reduce par t ia l -d i f ferent ia l -equa-  
tion problems to ordinary-di f ferent ia l -equat ion problems whose solution can be obtained more  simply,  o r  even 

1 

to pass in some cases  to l inear equations. In those special  cases  in which 1 ~ I f (0) d0 ~2 ,  the tempera ture  
0 

field in the per iphera l  par t  of a bounded body for any monotonic f(O) can be determined with sufficient accuracy  
by using, for  example,  the available analytic solutions of [2] for  the half-space without satisfying the condition 
of "identity" of the bounded body and the half-space with respec t  to f (O) .  

All the resul ts  cited are  also valid for the case ~o(0) ~ 1 if instead of 0 we take 

0 
u = .I" q~ (0) dO. 

0 
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2. 

L I T E R A T U R E  C I T E D  

A. A. Samar sk i i  and I. M. Sobol ' ,  Zh. Vychis l .  Mat.  Mat.  F i z . ,  3 ,  No. 4 (1963). 
A. V. Lykov,  T h e o r y  of Heat Conduct ion [in Russ ian ] ,  V y s s h a y a  Shkola,  Moscow (1967). 

Dep.  3327-76,  Ju ly  19, 1976. 
Or ig ina l  a r t i c l e  submi t ted  M a r c h  2, 1976. 

S O L U T I O N  O F  H E A T - C O N D U C T I O N  P R O B L E M S  F O R  A 

H O L L O W  S O L I D  O F  R E V O L U T I O N  W I T H  V A R I A B L E  

B O U N D A R Y  C O N D I T I O N S  

Yu. L. Khrestovoi UDC 536.201 

The ax ia l ly  s y m m e t r i c  t w o - d i m e n s i o n a l  t e m p e r a t u r e  field of a hollow bounded sol id  of revolut ion with a 
d i s t r ibu ted  heat  s o u r c e  F and a r b i t r a r y  ini t ia l  d i s t r ibu t ion ,  with length L,  ou te r  d i a m e t e r  R,  and inner  d i a m e -  
t e r  r0, when the  boundary  condi t ions  a r e  n o n s y m m e t r i c  boundary  condit ions of the th i rd  kind and the t e m p e r -  
a tu r e s  of the m e d i u m  a r e  funct ions  of t ime  and the coo rd ina t e s ,  is d e s c r i b e d  by the s y s t e m  

Ot _ O~t - ~ - -  . - -  r + F (z, r, v), t = t (z, r, v), (1) 
Ov 3z"- ' r Or , 

where  

p ~ r ~ l ,  O < p < l ,  O ~ z ~ l ,  O ~ v < ~ ,  

a z  ~ p r o L ~,=y~, z = ~ ,  ~ = ~ , . = ~ ,  ~- 

The boundary  condi t ions  a r e  

Ot J Ot r-1 
aT ir=~ = h tt !r=. -- % (z, v)l, - ~ ,  _ = -- h It/r=~ -- # (z, ~)], 

ot ] o, I O-T z=O =h~ [t lrz=O-tfo (r, v)], -&z z = l = - - h l  [t Jz=l --tf~ (r' v)], 

(2) 

whe re  

aR %L alL 
h~ t t -C--~ ' - ~ - '  ~, ' ~. 

The ini t ia l  d i s t r ibu t ion  is 

t ;~=0 = % (~. r)  (3) 

Here  ~ and p a r e  d imens iona l  coo rd ina t e s ,  X and a a r e  the t h e r m a l  conduct iv i ty  and t h e r m a l  diffusivi ty ,  t f  and 
a r e  the t e m p e r a t u r e s  of the m e d i u m  and the hea t - exchange  coef f i c i en t s ,  the ind ices  r e f e r  to the h e a t - e x -  

change s u r f a c e .  

By s u c c e s s i v e  reduc t ion  of the boundary  condi t ions  to homogeneous  boundary  condi t ions  and subsequent  
appl ica t ion  of  the Hankel t r a n s f o r m  

t 
.t'_ rTV~ (pr) dr, V o (pr) = cJQ (pr) - - d Y  o (pr), Tn 

c = Y a ( p ~ t ) +  h~, Yo(P~), d =  h Jo(P~)~-J!(P~Q, P-{Pl ,  t '=!, 2 . . . . .  :r (4) 
P P 

[ h jo (P) - -J1  (P)J i - ~ -  Yo(P,a) + YL (Pg)J = [  h Yo(P) --  Y I ( P ) J [ - ~  Jo(Pt, O -~ JI (P~t)] 

(J and Y a r e  B e s s e l  functions)  and the F o u r i e r  t r a n s f o r m  
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1 
ho UF = ,f ?2WO (k2) dZ, W 0 (kZ) = COS kZ .31- -~- sin kz, 

o 

k = {ki, i = 1, 2, 3, �9 �9 ., oo }, ctg k = ks-- h~ 
k (h0 + hi) 

(5) 

the so lu t ion  can be wr i t t en  as  

whe re  

l 1 

[;='C-~-~& ~ W~176176 

S rV~ (pr)dr ,f IV~ (kz) dz Vt"O 
V. 0 

o 1 1 
X rVo (pr) Vo (kz) drdz -+- ,t' S S (  02to Otc + g2 ( ~r (r " + F )  (pr) Wo (kZ) Oz ~ Ov 7 - ,  - ~ - )  -- P"P) rV~ exp (Mcrv) drdzd~ ' 

o ~ o 

, hlz__~ 0" 
t e = P + P ~ ,  Me r = k  2-}'g'p*, P = g o ~ h ~ + 2 ( g o + q l ) ,  

h (r -- ~)~ 
P =t f~+ (1-- /x)h+2 (t:--t:~) l--Ix , 

1 OP~ 1 OP p 

(6) 

(7) 

We a l so  obta ined a so lu t ion  f o r  a o n e - d i m e n s i o n a l  p rob l em for  a hol low disk ,  a spec i a l  ca se  of which is 
a d i s t r ibu t ion  in an unbounded hol low c y l i n d e r .  

The solut ion can eas i ly  be g e n e r a l i z e d  to a cont inuous sol id  of revolu t ion .  As p ~ 0, Pp = t f ,  

W o (pr) = Jo (pr), P= hJo (P)/J1 (P)" 

The solu t ions  g iven above can be used  fo r  e s t ima t ing  the a c c u r a c y  of n u m e r i c a l ,  ana log ,  and o ther  a p -  
p r o x i m a t e  me thods  of  solut ion of hea t - conduc t ion  p r o b l e m s .  

Dep.  2899-76 ,  Ju ly  8, 1976. 
Or ig ina l  a r t i c l e  submi t t ed  May 25,  1974. 

O N E  M E T H O D  O F  S O L V I N G  P R O B L E M S  O F  

M A S S  E X C H A N G E  W I T H  S T O C H A S T I C A L L Y  

C O E F F I C I E N T S  O F  T H E  E Q U A T I O N  

P .  A .  M o r o z  a n d  A .  P .  K o r o s t e l e v  

HEAT AND 

PERTURBED 

UDC 518.519.2 

The f i r s t  b o u n d a r y - v a l u e  p r o b l e m  is ana lyzed  fo r  the equation 

k (x, y) [[ O~ y) + O~u(x,ov, Y)]--c(x,. y).u(x, y)+i(x, y)=O, 

where  the coef f i c ien t s  k(x,  y) and c(x,  y) r e p r e s e n t  Gauss ian  r andom f ie lds .  Let  k(x, y) = k0(x, y) + ak(x, ylw), 
where  k0(x, y) is the a v e r a g e  value of the coeff ic ient ;  a is  a s m a l l  p a r a m e t e r ;  and k(x, ylw) is an i so t rop i c  
r a n d o m  field with a c o r r e l a t i o n  funct ion B(-~. Analogous  a s sumpt ions  a r e  made  re l a t ive  to the funct ion c(x,  y) .  
It i s  p r o p o s e d  to so lve  such  p r o b l e m s  by the Monte Car lo  method [1], r ea l i z ing  the t r a j e c t o r i e s  of dif fusional  
p r o c e s s e s .  In c o n t r a s t  to the wel l -known " lo t t e ry"  methods  f o r  the r andom fields k(x, y) and c(x,  y) ,  it is  
p r o p o s e d  to mode l  the r a n d o m  p r o p e r t i e s  of the m e d i u m  by a t ime -dependen t  "noise"  ~ (rio:) in the r ea l i za t ion  
of the d i f fus ional  t r a j e c t o r i e s .  T h u s ,  with c(x,  y) - 0 it is  p roposed  to mode l  the t r a j e c t o r i e s  of d i f fus ional  
p r o c e s s e s  d e t e r m i n e d  by the s t ochas t i c  d i f f e r e n t i a l e q u a t i o n s  dX~ = {'~--0~dw t and dXt = (k0 (Xt) + ~ (tlw)dwt 
where  wt is a t w o - d i m e n s i o n a l  Wiene r  p r o c e s s  [2]; then quant i t ies  (functionals of the t r a j e c t o r i e s  X~t and X t of 
the p r o c e s s e s )  of  the type  
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To T 

so = ( I(x~ dr; J = t(x l d/ 
o 

a re  ca lcula ted ,  where 70 and T a re  the t imes  of depar tu re  of the r e spec t ive  t r a j e c t o r i e s  f rom the region in 
which the solution is sought. 

On the assumpt ion  that  the t r a j e c t o r i e s  of the p r o c e s s e s  e m e r g e  f r o m  the point (x, y),  it is shown that 
the ave rage  value of (J0 _j)2 is an e s t ima te  of  the d i spe r s ion  of the solution u(x, y) at this  point.  

An analogous e s t ima te  of the d i spe r s ion  is demons t ra ted  for  the case  of c(x, y) =- 0. 

To obtain such e s t ima te s  it is impor tan t  to c o r r e c t l y  " t r ans f e r "  the cor re la t ion  of the coefficient  k(x, y) 
in space  into the co r re la t ion  of the random "noise"  ~ (tiw) in t ime .  The appropr ia t e  equation is obtained for  
the de te rmina t ion  of the cor re la t ion  function ~ (tlw) through B(~ .  

The p roposed  method can be rea l i zed  both on a spec ia l ized  probabi l i ty  hybrid (analog-digital) calculat ing 
complex [3] and on a un iversa l  compu te r ,  although the rea l iza t ion  is  less  eff icient  in the la t te r  case .  

I. 

2. 

3. 
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Dep. 3322-76, August 17, 1976. 
Original  a r t i c le  submit ted Sep tember  4, 1975. 

A L O C A L  F O R M U L A T I O N  O F  T H E  E Q U A T I O N  

O F  E X E R G E T I C  B A L A N C E  

G .  1 ~. Y a s n i k o v  a n d  V .  S.  B e l o u s o v  UDC 536.70 

The subs tant ia l  and local f o r m s  of the equation of exerge t ic  ba lance ,  in the der ivat ion of which methods 
of the t he rmodynamics  of i r r e v e r s i b l e  p r o c e s s e s  a r e  used ,  a r e  obtained for  a s t r e a m  in externa l  conserva t ive  
fields in the p re sence  of chemica l  reac t ions .  The substant ia l  equation of exerge t ic  balance in the Lagrangian 
fo rm has the f o r m  

d e ( I - ) = - ~ .  / ~ a  . . 

The phys ica l  meanings  of the t e r m s  enter ing into this equation a r e  as follows: de--xjq-~, ~ h~:~:~ is  the flux of 
k 

heat exe rgy  c a r r i e d  by heat  conduct ion;Jq and J k  a re  the fluxes of heat and ma t t e r ;  "r e is the exerge t ic  tern-  

pe ra tu re ;  ~ ~ h::J~: is the flux of heat exergy  f r o m  the m a s s  of components;  ~ eh]~ is the diffusional exergy  
k k 

flux; e r  = - -  ( 1~ v . ~  ~ ~e is the exerge t ic  power  of the viscous  fo rces ;  ~v  is the viscous s t r e s s  t ensor ;  V" is  the 

s t r e a m  velocity;  ediH=Te~JhFh is the exerge t ic  power  of the diffusional flux of potent ial  energy;  70~* = To --JqX 
L k 

~r  ~ j ~ . ~ ( ~ h ) ~  A~]_L]is the power  of the exerge t ic  losses  due to heat conduction, diffusion, and ch emi -  
k i 

cal  reac t ions ;  T and T o a re  the t e m p e r a t u r e s  of the s t r e a m  and the medium;  .Pk is the chemica l  potential;  Aj 
is the affinity of the j - th  chemica l  react ion;  Jj  is the chemica l  reac t ion  ra te ;  l~ - p (d/ ' /dr)  is  the power  c o r -  
responding to the externa l  work dl ' = --vdp.  
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The quantity e(L) r e p r e s e n t s  the specif ic  exe rgy  of the s t r e a m  (in the Lagrangian  form) in the s y s t e m  
of the cen te r  of m a s s  of an i so la ted  e lement .  The tota l  exe rgy  (in the Euler ian  form} 

1 
e (e) = e (L) + "~ v ~' + ep, 

which takes  into account  the mechan ica l  ene rgy  of the s t r e a m  (1/2v2 + ~),  is  int roduced for  the t rans i t ion  t o  the 
local  f o r m  of the equation o f e x e r g y  ba lance .  

The equation obtained al lows one to introduce the local  flux of exergy  and its  s ink (exergetic  losses) .  
The r e su l t s  obtained can be used for  the ana lys i s  of continuous mul t icomponent  s y s t e m s  in which chemica l  
reac t ions  and p r o c e s s e s  of diffusion and heat conduction occur  and viscous  fr ic t ion ex i s t s ,  f r om the point of 
v iew of the poss ib i l i ty  of the p e r f o r m a n c e  of ex te rna l  useful  work by them.  

Dep. 3328-76, July  19, 1976. 
Original  a r t i c l e  submit ted  October  15, 1974. 

A G E N E R A L I Z E D  G I B B S  E Q U A T I O N  F O R  

N O N A U T O N O M O U S  P H A S E  I N T E R F A C E  R E G I O N S  

I~. V .  V e i t s m a n  UDC 536.755+532.6+541.11 

A gene ra l i zed  Gibbs equation is  obtained for  a phase  in te r face  region (PIR) when the field of (quasi) ex -  
t e rna l  fo rces  is  nonsteady and i ts  cu r l  is  equal to zero:  

+ + ' , ..,. 

k k 

(1) 

The l inear  t he rm odynam i cs  of i r r e v e r s i b l e  and nonsteady p r o c e s s e s  taking place  in the PIR (a sur face  
layer)  is developed using (1). The method of I. Pr igogine  [1] is  used in its development ,  i . e . ,  the entropy 
product ion g[S], the d i ss ipa t ive  function $, and the genera l ized  fluxes and forces  a re  sought.  In the p roces s  
(1) and the local  energy  balance a r e  used.  The local  balance of potential  energy  is supplemented by a t e r m  
allowing fo r  the nonsteady nature  of the (quasi) ex te rna l  fo rces .  The theory  of su r face  fo rces  presented  in 
[2, 3] is Used. The phenomenological  laws a r e  formula ted:  

R :V 

vn : X a.qo.,A~, + a qq (Xq)~ 6~ + X ap'k (X~)f~ 6~ + a~pXi~ 6i~, 
~ ' = 1  k ~ 2  

R N 

(Ik)~ = X a162Ae 6f~ -~ ako (Xq)~ "- ~ akk, (X~.)[~ @ akpXif~ 61, 
.q=l k = 2  

R N 

(Iq)f~ : ~ l  aqf~Ag ~)f~ ~- aqq (Xq)e, @ ~2aqk (X*k)~-~ aqpXi[sr 

R N 
pi~ ~ X ap~A~ 6i[~ + apq (Xq)i 6~ +k~2apk (X~)i 6B~ ~] ( OWl 

�9 Ox~ 
P-=l 

O~j  % (_2 ,t-;)** , 

+ Ox~ + \  3 Ox i 
i. 1=1, 2, 3 

The f i r s t  a t t empt  at the formula t ion  of the phenomenologica l  laws for  anisot ropic  regions  was presen ted  in [4]. 
However ,  in [4] a number  of i naccu rac i e s  were  commi t ted  which a r e  el iminated in the p re sen t  a r t i c le .  

NOTATION 
+ + + 

T, absolute temperature; s, u, Pk, specific e~tropy, internal energy (J/kg), and chemical potential of 

substance of type "k"; "" TD,+eij , s t r e s s  and deformat ion  t enso r s ;  p,  Pk, densi ty of substance  and par t i a l  density 
of subs tance  of type "k";  N k = Pk/P;  (Tk)ij, component  of ~'ij due to the p re sence  in the s y s t e m  of a q u a s i - e x -  
t e rna l  specif ic  fo rce  act ing on pa r t i c l e s  of type "k"; wi, wj, veloci ty vec tor  of cen te r  of m a s s ;  5ij,  Sift, 
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Kronecker  object;  xfi, coordinate;  Pifi, Iq, (I~)/~, general ized fluxes of p rocesses  of viscous fiow, h~at s  
f e r ,  and mass  t ransfer ;  Xifl , Xq, xk~, (X~)t~, ~eneralized forces  corresponding to them; a k k , ,  a p q ,  e t c . ,  
phenomenological coefficients;  ~, ~, coeff |blents  of viscosi ty  and volumetr ic  viscosi ty;  5 i ,  5fl ,  unit dimension-  
less vec tors  with mat r ices  (111). 

1 ~  

2. 
3. 
4. 
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Dep. 2442-76, June 1, 1976. 
Original ar t ic le  submitted Februa ry  2, 1976. 

T H E R M A L  P R O C E S S E S  IN C U T T I N G  W I T H  

S P E C I F I E D  T O T A L  H E A T - S O U R C E  O U T P U T  

M. Ao A r a n z o n ,  G .  A .  K u l a k o v ,  
a n d  V.  M. K h o r o l ' s k i i  

UDC 621.791.011 

Steady-state  heat t r ans fe r  during cutting is considered for a three-body sys tem:  cut ter ,  component,  and 
s w a g .  It is assumed that the heat-balance equation applies to the cutting zone: 

Q = Q1 + Q~ + Q~, 

where Qi = qisi; i = 1, 2, 3 are  the heat fluxes in the cut ter ,  component,  and swarf  via contact a reas  si;  Q = 
pz v is the total output of the heat sources ;  Pz is the principal  component of the cutting force;  v is cutting 
speed; s I = b l ;  s 2 =bl2;  s 3 =bl3; 13 = I f  + / r ;  12 = 13 + /d ;  b is cut width; / l a n d  l r  are  the lengths of the con- 
tact  a reas  on the front and r ea r  faces of the cutter ;  ld is the length of the deformation area;  and l = I f  + l r ,  

The t empera tu re  T at the edge of the cut ter  (the contact temperature)  is common to all the bodies in con- 
tact;  the contact  tempera ture  for  each body is specified as 

T=Q~u i = l ,  2, 3, 

where Yi are  the the rmal  potentials,  which sat isfy the  heat-conduction equations and cer ta in  initial and bound- 
a ry  conditions. 

We substitute the express ions  for the heat fluxes in t e rms  of the common tempera ture  T into the heat-  
balance equation to get a solution for  the contact problem as 

3 

; Q ~ = T - -  ; i = l ,  2, 3. 

The main difficulty here is to calculate the 7i, which are  dependent on the speeds of the heat sources ,  
the geomet ry  of  the bodies, the shapes of the contact a reas ,  and other  fac tors .  

Hea t - source  methods have given express ions  for  the the rmal  potentials fo r  var ious  conditions; f o r  in-  
s tance,  if the cut ter  is taken as an octanf and the sources  a re  distributed as q u a r t e r - c i r c l e s  of radii I f  and lr, 
then the following relat ions apply for  weak cooling and vigorous cooling, respect ively:  

71 ~ 2/(bL~); 71 ~ 1/(~ab), 

where h i and h are  the thermal  conductivity and hea t - t r ans fe r  coefficient. 

If the component is represented  as a ha l f - space ,  with distributed heat sources  moving over  the surface ,  
then 

1 F ( vl~ "t V 2 "72= 2~20 \ ~  / ; F (~) = a~ 
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The swarf  is taken as a plate with distr ibuted heat sources  moving over  the end. The heat re leased by 
the s t ra in  and fr ict ion on the front face of the cut ter  is incorporated to give 

[ v .  = . t s  - -  v + 2  ( ~ - n )  ~.bti ~l. ,~]-~ 

where f(~) = [F(~)]-I; ke is the shrinkage factor ;  n is a coefficient represent ing the heating of the s w a n  (0 <- 
n _< 1); and tS is the c ro s s - s ec t i ona l  a rea  of the cut. 

As i t  is comparat ively  simple to determine the total amount of heat deposited in the cutting zone, this 
method provides a good means of comparing theore t ica l  t empera tures  with observed ones.  Such compar ison  
has been per formed in the cutting labora tory  at Kuibyshev Polytechnical  Insti tute,  and it has been found that 
the d iscrepancy between the t empera tu res  does not exceed 10%. 

Dep. 3321-76, August 9, 1976. 
Original ar t ic le  submitted August 14, 1973. 

T H E  E L A S T O P L A S T I C  S T A T E  IN A S O L I D I F I E D  

C Y L I N D R I C A L  C A S T I N G  

V .  A .  Z h u r a v l e v  a n d  A .  L .  G o l o v a n o v  UDC 539.319:536.5 

The state of s t ra in  in a casting has been examined with the body represented as an ideal elastoplast ic  
body subject to T r a s k ' s  yield condition. The crys ta l l iz ing phase is considered as consist ing of a plastic zone 
in which the relaxation t ime for  the thermoelas t ic  s t r e s se s  is negligible by compar ison  with the charac te r i s t ic  
solidification t ime,  together  with an elast ic zone in which the s t r e s s  relaxation t ime is very large.  The yield 
point is taken as a l inear  function of t empera tu re .  

The tempera tu re  distribution in the crys ta l l iz ing casting is derived f rom the corresponding axially s y m -  
me t r i ca l  Stefan problem [1]: 

[ ( r ~ ,  ! , \ ,   l-OXo z7 T (r; Fo) .... 4 Fo* .. , . 

T rans fe r  to dynamic var iables  is used in handling the mechanical  problem: the s t ra in  rates  and the ra tes  
of change in the s t r e s s  tensor .  This approach has been used [2] in calculating thermoelas t ic  s t r e s se s  for a 
crys ta l l iz ing cyl indrical  cast ing.  The inverse  t ransformat ion  is per formed in accordance  with 

t 
o ~ i ~ (r; l) dt, 

where r is the moment  of at tachment of a point to the moving phase boundary and t is the cur ren t  t ime.  The 
conditions of the boundaries of the elast ic  and plast ic zones are  used to derive expressions for the components 
of the s t r e s s  t ensor  in each zone together  with the coordinates of the boundaries.  

1 .  

2. 
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C A L C U L A T I O N  O F  T H E  T E M P E R A T U R E  D I S T R I B U T I O N  

IN A S O L I D  S U B J E C T  TO N O N L I N E A R  B O U N D A R Y  C O N D I T I O N S  

Y u ,  V.  V i d i n  UDC 536.2.01 

It is common pract ice  to examine complex nonlinear hea t - t r ans fe r  p rocesses  by describing the t ranspor t  
in t e rms  of integral  equations in which the unknown function is the heat flux at the surface of the body [1]. Uni- 
fortunately,  the solutions to such equations eannot be represented  in closed analytical  fo rm,  apart  f rom r a r e  
special  cases .  

A method has been descr ibed [2, 3] for l inearizing the boundary conditions by using the solution for  a 
thin body as the kernel  in the integral  t r ans form;  then one uses the following t r ans fo rm [2]: 

u - u0 = N t 
dn (1 ) 

f (n) ' 
40 

/ 

to get a l inear boundary condition of the second kind, while if one uses the following [3]: 

U = exp -- N f d~ v - :  . )EV, )  ' N = r  (2) 
~o 

one gets a boundary condition of the third kind. Here f(~) is the specified heat flux, which is dependent on the  
surface t empera tu re .  When (1) or  (2) is used in the modified-conduction equation, the nonlinear t e rm can be 
eliminated for  bodies of medium heat capacity.  Therefore ,  the integration for  the initial nonlinear case can be 
reduced to solution of a l inear t ranspor t  problem subject to boundary conditions of the second or  third kind. 

However,  many numerical  solutions are  available for  nonlinear cases  and can be utilized in examining 
heat propagation when there  are  more  complex nonlinearit ies in the boundary conditions. For  this purpose one 
can use the following general  t r ans form:  

U 

�9 g (6) [ (n) (3) 
Uo ~o 

where the function g(U) descr ibes  the hea t - t r ans fe r  law for  a standard problem for  which a solution is avai l -  
able in analytical ,  graphical ,  or  tabular fo rm.  It is c lear  that (1) and (2) are  par t icu lar  cases of (3). 

It is best here to select  a s tandard problem from those available such that g(U) corresponds  best to the 
s t ruc ture  of f(~). 

The express ion for  the complex appearing in the modified conduction equation is as follows when (3) is 
used in the one-dimensional  case:  

i,_ f ' -g '  ( a u ~ .  -g- \ oq, j 

This means that P is smal l  in magnitude in both instances;  f i r s t ,  if the heat capacity of the component is not 
too large ,  we have (0U/8r 2 ~ 0, and, secondly,  P tends also to zero when the derivat ives f '  and g '  do not 
differ substantially.  If g(U) is chosen appropriately,  the second condition can be met  and thus the effects of 
P can be minimized.  

1 .  

2. 
3. 
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T E M P E R A T U R E  D I S T R I B U T I O N  IN A 

S E M I I N F I N I T E  C Y L I N D R I C A L  S H E L L  

A .  N .  K u l i k ,  L .  8 .  G u l ' c h e v s k i i ,  
a n d  Y a .  I .  P o d k o v a  

UDC 539.377 

The t empera tu re  distr ibution in a semiinfinite cyl indr ical  shell has been determined together  with that 
in a thin annular plate attached to the end, with the outer  edge of the plate welded to a ce rme t  unit in an e lec-  
t ron -beam device.  The theore t ica l  sys tem consis ts  of semiinfinite plates and a s t r ip  heated by a line source  
moving over  the end at a constant speed. 

Differential  equations for thin plates with specified heat fluxes at the side surfaces  are  utilized along 
with express ions  for  the internal  heat sources  in o rde r  to determine the tempera ture  distribution in the plate: 

Ap~T ..at, w = - -  (q+ q- q - ) ,  

AP ~ T * -  1 2  T* + w *  = - - 3 ( q §  
i" 

where  
0 2 0 2 1 O 

A = 2 k 6 ;  p ' = - -  + . . . .  
(gx~ Oy ~ a Ox ; 

T = - - ~  tdz; = 262 ztdz 

- 5  - 5  

are  the in tegra l  eharac te r i s t i c s  of the t empera tu re  t of the plate and 
+6 +6 

w = Wdz; w* = - ~  zWdz,  

--5 --8 

where W is the density of the heat sou rees ,  q~ a re  the specified heat fluxes at the side su r faces ,  and r = 25/X 
is the internal  thermal  res i s tance  of the plate.  

The solution is derived as follows. The tempera tu re  distribution in the plate is determined for a line 
source  moving over  the end in the p resence  of heat sink on the side welded to the semiinfinite plate (cermet).  
Then the t empera tu re  distr ibution is determined for  a semiinfinite plate heated on the end by a flux equal to 
that absorbed by the sink, which was not previously known. 

As the mean t empera tu res  must  be equal at the interface between the annular plate and the semiinfinite 
plate,  the unknown heat flux can be determined,  and this serves  to define the tempera ture  distribution in each 
of the two bodies.  

Calculations have been per formed for  the quasis tat ionary state to give the dimensionless temperature  at 
the interface between the two plates;  a study has also been made of the effects of heat t r ans fe r  from the surface 
of the semiinfinite plate. 

It is found that the maximum tempera tu res  at the joint between the two plates occur  behind the heat 
source ,  where the t empera tu re  gradients  are  minimal .  

Dep. 2369-76, June 14, 1976. 
Original  ar t ic le  submitted July 23, 1975. 
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T R A N S F E R - F U N C T I O N  D E T E R M I N A T I O N  F O R  A H E A T  

E X C H A N G E R  H A V I N G  A S P A T I A L  D E T E R M I N A N T  OF O R D E R  

I .  G.  C h u m a k ,  A.  I .  K o k h a n s k i i ,  
a n d  S.  N .  R o g o v a y a  

n 

UDC 621.565:621.078.001.1 

The t ransient  state in a heat exchanger may be examined by means of differential equations in part ial  
der ivat ives;  there are  various methods of solving these equations in t e rms  of the sp~tiai coordinates ,  but 
they all have the disadvantage that it is very complex or  virtually impossible to derive the t ranscendental  
t r ans fe r  functions for  such a sys tem when the o rde r  of the spatial determinant  for  the sys tem is g rea t e r  than 
two. A method is given for  defining the t r ans fe r  functions for  a sys tem whose equations have a spatial  de te r -  
minant of o rde r  n, for  which purpose the sys tem is put in opera tor  form as follows subject to zero  initial and 
boundary conditions (for a packed a i r  cooler):  

a2 as l 
ta(S,  p ) - -  s~-Al(p~)  tw(S '  p) s ( s + A l ( p ) )  aa(O' p) + s + A l ( p )  tai:(O' p)' 

b:~ b 4 I 
tw( s ,  p ) =  s @ B l ( p  ) ta(S, p) : s ( s @ B l ( p ) )  Ga(O, p) -~ s @ B l ( p ) - t w i ( O ,  p). 

(1) 

Then an inverse  Laplace t r ans fo rm is per formed with respect  to the spatial coordinate for  each equation sepa-  
rately and (1) is solved for the variables  ta(H, p) and tw(H, p) to get the t r ans fe r  functions as 

fa (H, p) e -A~ (p) H 

(p, H) --  lai (o, p) - 1 - -  aeb~e- (B, (p)-[-m, (p)) .~. (2) 

This approach makes it comparat ively simple and easy to derive the t rans fe r  functions, especial ly as r e -  
gards  analysis  of the effects of pa rame te r s  on equipment per formance;  the method has been tested ~-ia analyt i-  
cal calculations on the dynamic and static charac te r i s t i c s  of an a i r  cooler ,  and these were compared with mea-  
surements .  The resul ts  were in good agreement .  For  example, the coefficient given by (2) in this method was 
Ktai = 0.84, while experiment gave Ktai = 0.82. 

Dep. 2154-76, May 25, 1976. 
Original ar t ic le  submitted July 31, 1973. 
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